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We suggest a situation in which one might observe a two-peak structure which is in
fact a single, broad, inelastic resonance. Starting with an inelastic factor n which has
a single smooth dip, but differs somewhat from a Breit-Wigner form, we find that the
Ball-Frazer mechanism generates a two-peak resonance.

There has been much interest lately in the
structure of the A, meson.!»? Various attempts
have been made to parametrize the shape of this
double-peaked resonance by assuming that there
are actually two narrow, incoherent resonances,?
each having a Breit-Wigner shape, or by using
the more unusual “dipole” shape resulting from
the mixing of two degenerate resonances.® Until
the spin and parity of the lower peak are clearly
established, nothing definite can be said about
the true nature of this particular resonance.?
However, either of these two models would lead
us to expect to see the same two-peak structure
in other members of the SU(3) multiplet* with
almost surely a clearer separation of the peaks.

The purpose of this paper is to suggest that one
might find a two-peak structure which is in fact
a single, broad, inelastic resonance which re-
sults from the detailed shape of the inelastic
cross section. In this case, we expect that other
members of the SU(3) multiplet would probably
not show the two-peak structure.

Consider the scattering of two spinless parti-
cles of equal mass m, which have an S-wave res-
onance above the inelastic threshold s; (s =square
of center-of-mass energy). The elastic partial-
wave amplitude is

A =(S—-1)/21,,
S=ne2i6, (1)

where 6 is the real part of the phase shift and 7
is the inelastic factor. The elastic cross section
is determined by |A |2 while the total cross sec-
tion is determined by ImA:

[A12=[(1-1 cos26)?+ ( sin25)?],
ImA = 1417+ £(1-77). 2)

If the resonance has the usual single-peak
structure, we attempt to parametrize it by using
a Breit-Wigner fit

A =§Fe/[mR2—s—%i(l“e +ri)], (3)
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where mp is the mass of the resonance, I‘e is
the elastic width, and I'; is the inelastic width
(including kinematic factors). We can now easily
find expressions for n and 6 in terms of I'p, I,
and mRz.

For our calculation we will restrict ourselves
to cases where I';>T', at s =mp® We find that
6(mpg?) =0 and the S matrix has no zeros on the
physical sheet near this resonance. The peak in
the cross section is then entirely due to the Ball-
Frazer mechanism® and 6§ may be represented as

=k (Chlns)] |,
6(8)—27TPS] k’(S’—S)ds ’ (4)

where k=4(s-4m?)*? and P means that we must
take the principal value integral. If we use the
7 corresponding to a given Breit-Wigner shape
we can compute the § for the same Breit-Wigner
shape by using Eq. (4). This is shown in Fig. 1
where we plot 6, |42, and ImA computed from
a given Breit-Wigner expession for 1. 6 and 75
are thus related by a dispersion integral based
on the analytic properties of the S matrix. If T'e
>T'; then conjugate, S-matrix zeros do appear on
the physical sheet and we can modify the disper-
sion relation to take this into account.” Then if
we know 7 and the position of the zeros of a
Breit-Wigner resonance, we can compute § from
the dispersion relation.®

Phase-shift analyses in 7N scattering do re-
veal inelastic factors showing a pronounced mini-
mum at the position of a resonance, but it is im-
possible to parametrize many of these resonanc-
es with a Breit-Wigner shape.?!® This is not
surprising in view of the fact that these reso-
nances are of the order of a hundred MeV wide
whereas the Breit-Wigner resonance formula
was designed to describe narrow resonances.
We will therefore adopt the attitude that the
phase-shift dispersion relation is more funda-
mental than the Breit-Wigner representation and
can be used to compute the phase shift of a reso-
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FIG. 1. (a) Inelastic factor resulting from a Breit-
Wigner amplitude versus s. (b) Phase shift computed
from (a) by using the dispersion relation Eq. (4) for
the phase shift. (c) |A|? (solid line) and ImA (dashed
line). We use units Z=c=m =1,

nance and hence the amplitude if n is known (and
there are no S-matrix zeros).

From Eq. (2) and the form of the phase shift in
Fig. 1(b) we note that if we can make the maxi-
mum value of 52 45° and the minimum value of
6<-45° then we will see a double-peaked reso-
nance since |A|%>% at 161 =45°and |A}%2<3 at
6=0. Since the Breit-Wigner phase shift itself
almost makes this possible, we expect to be able
to produce this behavior with an inelastic factor
not too different from a Breit-Wigner inelastic
factor. We show such an inelastic factor graphi-
cally in Fig. 2(a). The crosses indicate the
shape of a Breit-Wigner inelasticity for compari-
son. Both the elastic partial-wave cross section
and total cross section shown in Fig. 2(c) exhibit
a double peak even though there is only a single
smooth dip in 7.
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FIG, 2. (a) Inelastic factor which deviates from
Breit-Wigner form. The crosses show a Breit-Wig-
ner shape for comparison. (b) Phase shift computed
from (a) by using the phase-shift dispersion relation.
(c) |A|? (solid line) and ImA (dashed line).

We have not included the effects of S-matrix
zeros because we have no means of determining
the positions of the zeros from a knowledge of 5
for real s. We have done calculations where we
chose the S-matrix zeros close to the minimum
in n with a reasonable width and find that it is
possible to enhance the dip greatly in the cross
section shown in Fig. 2(c) and also make the
branching ratio into the inelastic channel much
smaller. There are, in addition, contributions
to & from singularities farther away such as the
left-hand cut which could enhance or wash out
this structure.

If the resonance structure seen in the region
of the A, meson were actually due to two distinct
resonances or a dipole-type resonance, we would
expect to see the same type of structure in other
members of the multiplet* with perhaps a clearer
separation of the peaks. This calculation raises
the possibility that the splitting may be an anom-
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aly due to a deviation from the usual resonant
shape which cannot be described adequately by a
Breit-Wigner fit, but which can be accommodat-
ed by the phase-shift dispersion relation. If this
analysis is relevant, we would not necessarily
expect to see the same structure in other mem-
bers of the multiplet. It is also clear that the
structure would depend on the particular chan-
nels at which one looks. Thus the structure
would depend on the production mechanism of
the resonance.

We would suggest that one should closely exam-
ine all broad, highly inelastic resonances for
this double-peak structure. In particular, likely
candidates would have n’s which are difficult to
fit with a Breit-Wigner form. The presence of
many open inelastic channels, some of whose
thresholds occur in the region of the resonance,
would be encouraging.

The calculation which we have presented is
clearly contrived to produce a double peaked
structure and we have left many questions unan-
swered. We do not know for certain if the depar-
ture of the shape of the inelastic factor from a
Breit-Wigner shape implies the presence of more
than one resonance. For example, if we take the
inelastic factor corresponding to a dipole fit we
can also compute a double-peaked structure
from the phase-shift dispersion relation. On the
other hand, for a broad resonance there are
many factors which can affect the shape of the
inelasticity and resonance such as new channels
or a rapidly varying background, and it is not
clear that one must assume that a broad, double-
peaked structure necessarily implies the exis-
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tence of two resonances or a dipole-type reso-
nance. It is clear that the fine features of the in-
elastic factor of a broad resonance are not well
described by a Breit-Wigner fit and we need to
have a more general understanding of resonant
shapes. A multichannel ND~*! model is being ex-
amined with the hope of clarifying some of these
points.
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