
VOLUME 2l, NUMBER 8 PHYSICAL REVIEW LETTERS 19 AUGUsT 1968

GENERALIZED DISPERSION SUM RULES AND THE A2 TRAJECTORY IN PION PHOTOPRODUCTION
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Generalized dispersion sum rules are used for determining the A2 trajectory and resi-
due function in pion photoproduction. Our results favor the Gell-Mann mechanism of
ghost elimination for the A& over the Chew and no-compensation mechanisms.

Generalized dispersion sum rules involving the real and imaginary parts of the amplitudes have
been recently derived by Liu and Okubo, ' who found them to be well satisfied for the T~ & amplitude in

nN scattering. These relations have been used by Liu and Okubo' for determining the P and P' Regge
parameters at t = 0 in mN scattering, and by Olsson' to determine the p Regge parameters at t = 0 in
mN scattering. In this note we extend the use of such relations to give a systematic method for deter-
mining Regge trajectories and residue functions over a range of t; we here use this method for deter-
mining the A, trajectory and residue function in y+N-m+N. '~'

%e consider the combination O' '=A, ' '-2mA, ' ' of photoproduction amplitudes, 'which is expected
to be dominated by the A, trajectory, and define

F (v, t)=e (v -v, ) G (v, t),
(-) ivy 2 2 -y (-)

where y is a real number less than +1, and v Op (t+p+')/4 .mIf E' ' has a suitable asymptotic be-
havior, then for sufficiently small t one may write a dispersion relation in v for I", for fixed t.
For small t, the dominance of the A, trajectory would imply the asymptotic behavior
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for sufficiently large v, where v, is a scale factor, conveniently chosen to be 1 Gep, and a(t), p(t) re-
fer to theA, trajectory. For»y& &a(t), for given t, F' ' is superconvergent; this gives a relation
involving integrals over ReG' ' and ImG' ', and the nucleon pole terms. Assuming that F' '(v, t) is
of the form (2) for v & v, we obtain the following relation:

1" 2 2-y (-) . (-) 2 2-y
dv(v -v ) [cosmy ImG (v)+sinvy ReG (v)]+r(v -v )0 0 P

7l +VO

sinn(2a-y) a(t)p(t) v

2m sin-,'ma a(t)-2y v,
(3)

where r = (eG/ 4)-m[1 +2(mph',
—p„)], and vp

=(t-p )/4m. For y&2a(t), we may write a su-
perconvergence relation for I ' '-RA,. this now
gives (3) for y & 2a(t).

Alternatively, one may continue (3) as a func-
tion of y below y = 2n, as pointed out in a similar
context by Olsson. ' The relation (3), for fixed t,
is therefore valid for values y (less than +1)
such that the non-Regge (background) part of the
asymptotic amplitude G' ' falls off more rapidly
than v 'Y for large v. As a function of t, the

!
sum rule (3) may be extended directly to the re-
gion -2~ p. &t & 4JLt. ',~ if we assume that a Regge
asymptotic behavior (2) is a, good approximation
in this region. For negative t, one may define a
continuation of (3) down to' t = (-4m p -p'); how-
ever, in this paper we restrict ourselves to t
& -2pyg p, , where the situation is simpler. For
positive t & 4p', the derivation of (3) given above
is no longer valid. However, if the absorptive
part of F' ' in the t channel (which receives con-
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tributions from 3w, 57t, KK, etc. states with IG
= 1 ) is small for a range of t above 4p', and if
Imo.'(t) «Reo.'(t) in this range, then the sum rule
(3), with o. replaced by Rea, may be expected to
be approximately valid for these values of t. We
therefore examine the results obtained from (3)
(with o. -Reo. ) for values of t above 4p' as well
as in the range -2m'. &t &4pm.

When, for given t, y= yg(t) —= ~a(t)-n, with n
= 1, 2, 3, ' ', then the right-hand side of (3) van-
ishes. For n =1, one obtains the sum rules
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= -~o.'(t)[sin2wo. '(t)] 'p(t) 1, (4b) FIG. 1. Re@(t} and He/(t} for the A& trajectory as a
function of t (in units of p&~).

where S(y, t; P) is t'he function defined by the left-
hand side of (3). For each value of t, solving
(4a) for y~ gives o.'(t) through the relation a(t}
=2yg+2. Using this in (4b} gives p(t).

On the other hand, when y= yet
= 2a(t), for giv-

en t, then (3) gives the sum rule

s(y, t; 'p} = -~o.(t)[sin~wu(t)] p(t)/v . (5)

Thus, for such values of yl3(t) for each t, the
function 8 must be independent of the parameter
P [which is the value of v above which the Regge
behavior (2) is assumed to become dominant].

To obtain numerical results, we approximate
E' ' by the lowest few partial waves, which gives
a parametrization of +' ' as a function of s and t.
The coefficients in this expression for E' ' are
determined by using the observed values of the
multipole amplitudes at physical s and t; we have
used the results of Walker et al. for these mul-
tipoles. We now assume that for the range of t
considered here this expression continues to give
a good approximation for +' '.

The solutions obtained for Ren(t) and ReP(t)
are shown in Fig. 1 for v corresponding to a pho-
ton laboratory momentum kf =PL = 1.2 GeV/c, -
which is the highest value of kL, at which the mul-
tipoles are available at present.

%'e have also obtained the solution for & corre-
sponding to kl, = 1.5 GeV/c, obtaining the ampli-
tudes above ki = 1.2 GeV/c by extrapolation. It
is found that the solutions do not vary much with
D within this range. The main features of our re-
sults are the following.

For small negative t, e(t) = o', + &,'t, where a,
=0.52, o.'0'=0. 045 for kL, =1.2 GeV/c. Varying
kg to 1.5 GeV/c decreases o!o and &~' by about
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15 and 20%, respectively. Our estimates of o.(t}
for small negative I; are of the same order as
those of Ref. 3. o.(t) is found to pass through ze-
ro at a value of t between about 11'~ and 14'~.
To determine the exact position of this zero
would require a more accurate knowledge of the
low- and medium-energy multipoles, as well as
a knowledge of the multipoles up to considerably
higher energies, which would enable one to
choose better values of v.

For positive t, the rate of increase of Re+
with t falls off. Although strong assumptions
have to be made to justify considering (3) (with
a -Reo. ) as being approximately valid for fairly
large positive t also, it is interesting to note
that the function Rea(t) thus obtained has the
shape expected of the Am trajectory, and takes a
value between 1.8 and 1.9 at t = mg ' (where it

2
should be 2}. These results for Reo'. (t) are sug-
gestive; we take them to indicate that for the am-
plitude G' ' considered here, the sum rule (3)
does provide an approximate method for deter-
mining a(t) even for large positive t. Near t
= mg, our assumptions may introduce appreci-
able errors, and the discrepancy of 10 to 20% in
this region is not unexpected.

Our results for positive t are in contrast to
those of Ref. 3; the solution given by the finite-
energy sum rules (FESR), if taken seriously for
large positive t, gives Re& &2 already at t = 50@, .
This difference arises because our procedure al-
lows y to be varied so as to weight the most sig-
nificant parts of the integrals separately for
each t, whereas in the FESR, y is kept fixed (at
0 or -1). Our results indicate that the best val-
ues of p are probably in the region -1 to 0, and
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Table I. f(y&, t; v) as a function of v [See Eq. (5)].
(Note that for given t, v is determined by k~.)

S(y&, t) as a function of k&
kl =1.2 GeV/c kL, =1.5 GeV/c
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that the larger values of y in this region are the
better ones for more positive values of t.

For the residue function P(t), we find that for
small negative f, P(t) =Po+ Po'f, where Pa=0.26
and Po'=0. 09. The solutions for P(t) obtained
from (4b) and (5) agree to within about 20% for
small negative t. For t &4&', this discrepancy
increases; however, (5) is obtained from (3)
with much larger values of y [than is (4b)], and
our overall results suggest that for positive t,
ReP(t) as obtained with the smaller values of y
occurring in (4b) is more reliable. The results
for P(&) vary by about 20% as kl. is varied be-
tween 1.2 and 1.5 GeV/c.

Our results suggest that the zero of P(t) would
lie at a value of t considerably more negative
than -15'' [and therefore more negative than
the zero of a(t)], unless the slope of P(t) chang-
es very rapidly below t = -13&'.' Thus if the
Regge behavior (2) is a good approximation above
kf =1.2 GeV/c and if p(f) varies smoothly for t
below -13LLt,', then the residue function would
not seem to have a zero at the ghost [where a(t)
=0]. This would favor the Gell-Mann mecha«
nism' for ghost elimination rather than the
Chew" or no-compensation mechanism, ~ in con-
trast to the conclusion of Ref. 3. This would
agree with the result suggested by the absence of
a dip in the angular distribution of K"P -If &++

and of ~ P-~." We stress, however, that till
multipole fits become available for kl, &1.2 GeV/
c and enable us to test whether the Regge behav-
ior (2) is a good approximation in this region, we
cannot infer reliably the ghost-elimination mech-
anism for the A, .

The sum rule (5) implies that its left-hand side
must be independent of &. In Table I we have

shown the left-hand side of (5) as a function of t,
for different &; it is seen to be independent of W

to an accuracy of 10 to 15 Io. Further, when &(t)
and 13(&) as determined from (4) are substituted
into (5), then for the negative values of t consid-
ered here, (5) is found to be satisfied to about
20 to 25 /c. These results support the validity of
the sum rule (5) and the consistency of our basic
assumptions. We believe that the main source of
discrepancy in our results for e(t) and P(t) is
that the value of P up to which the multipoles are
available at present may not be large enough for
the Regge behavior (2) to dominate completely.
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A possible zero at the wrong-signature sense point eg =
& on the exchanged Ag trajec-

tory is suggested in connection with the new Cornell-Brookhaven National Laboratory
experiments on the n p backward peaks.

Sharp diffraction peaks at high energy for the
backward 7t+p elastic scattering have been suc-
cessfully explained in terms of a Reggeized-
baryon-exchange model. In addition to this phe-
nomenon, the marked dip observed in the m P
cross section near u ~ -0.15 (Ge V/c)' has also
been interpreted as the wrong-signature non-
sense zero of the N~ Regge amplitude at ag(/u)

g 0

On the other hand, the recent Cornell-BNL
(Brookhaven National Laboratory) experiments'
on backward m p elastic scattering show the fol-
lowing features: (i) The m P backward peaks are
about twice as wide as most elastic forward dif-
fraction peaks and about four times as wide as
the rr+p backward peaks. (ii) The results may
not be inconsistent with a tendency for flattening
out of the m P backward peak at 180'. These are
not accounted for in the usual parametrization~
of the residue function of the exchanged d g tra-
jectory.

The purpose of this Letter is to suggest a pos-
sible zero at the wrong-signature sense point a&
=-,' on the exchanged b, g trajectory. Such a zero
gives us a new parametrization of the h~ residue
function, which would explain the new Cornell-
BNL experiments' on the m p backward peaks in
the framework of the Reggeized h~-exchange
model with reasonable values of sp and reason-

580

1

y (vu) = [a (vu)- —' f (1+u /M )y 0' (2)

with n =0 for case (i), n =1 for case (ii) or (iii),
and n =2 for case (iv). The value yo is then as-
sumed to be constant.

(d) Properly written, the amplitude should con-

able extrapolated magnitude of the L~ residue at
3the pole n&= &.

In essence, the model utilizes the following as-
sumptions regarding the behaviors of the trajec-
tory and the residue function~:

(a) The Chew-Frautschi plot for the a5 trajec-
tory is a straight line,

a (vu) = 0.15+ 0.90M.
b,

(b) The residue function y~(Su) includes a fac-
tor (1+5u"'/M~), corresponding to the absence
of a & resonance. Here we put 5=1 from Eq.
(1).

(c) The following four mechanisms' are consid-
ered at the wrong-signature point n~ =-', on the
b, 5 trajectory in the sense-sense amplitude: (i)
choosing-sense mechanism, (ii) Chew's mecha-
nism, (iii) Gell-Mann's mechanism, and (iv) no-
compensation mechanism. Thus, the parametri-
zation is taken to be


