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By projecting s-channel partial waves from a t-channel Regge trajectory, families
of resonances obeying l -Es are obtained. It is proposed that these are Regge trajecto-
ries obeying o.- v"s for high s.

The discovery of many new resonances has
suggested that for low energies, Regge trajecto-
ries rise linearly. ' This is in contrast to poten-
tial scattering where Regge trajectories turn
back. It is unknown whether trajectories rise in-
definitely, and whether the rise continues to be
linear. We will show that Regge behavior and
crossing suggest infinitely rising though nonlin-
ear trajectories.

Our approach is to study the s-channel reso-
nances generated by t-channel Regge poles.
Schmidm has recently shown that partial-wave
projection from a t-channel Regge pole gives
rise to circles in an Argand diagram which are
interpreted as resonances. ' This strongly rein-
forces the statement, ~ based on finite-energy sum
rules, that Regge poles represent the smoothed-
out resonance behavior even at low energy. The
Schmid method has also been applied to investi-
gate daughter trajectories. ' We shall investigate
the high-s and high-l behavior of resonances.
Our main conclusions are the following: (1) Res-
onances exist even at very high energy. (2) The
high-energy resonances can be grouped in fami-
lies satisfying I -v's (logarithmic terms are ne-
glected). It is suggested that these correspond to
infinitely rising, nonlinear Regge trajectories.
(3) For l «vs, partial waves are nonresonant and
large. (4) It is unlikely that the high-energy be-
havior can be described by an infinite number of
linearly rising trajectories.

For simplicity we will consider the scattering
of spinless particles, say m mesons. At suffi-
ciently high s this scattering is dominated by
two, well-separated, forward and backward
peaks. We will represent the forward and back-
ward peaks by the contribution from t- or u-
channel Regge poles, respectively. At low ener-
gies where the two peaks overlap, it is unclear
how to represent the contributions. Simple addi-
tion of t- and u-channel Regge poles is analogous
to adding s- and t-channel trajectories. It may
involve double counting, similar to that done
when the interference model is applied incorrect-
ly.

It is useful to obtain approximate analytic ex-
pressions for the partial-wave amplitudes at(s)
in order to investigate the high-l and high-s be-
havior. Because the strong forward and back-
ward peaks at small momentum transfer (t =t())
dominate the high-energy scattering, only very
small angles 8=(t,/tt')"~ are important. We may
thus use an approximate, ' small-8, high-/ be-
havior of Pt(cos8):

P (cos8) = J' [(2t+ 1) sin28]+ 0(sin —,'8).

This is the approximation used in the impact-pa-
rameter description of scattering. We parame-
trize the contribution of a Regge trajectory by

n(t)
((~)( )

iv a(t) -o(t)
sinvn(t)

sin~o. (t)e
So

n(t) = n, + a, t.

This parametrization should not be considered to
be of profound importance; it is clearly wrong
for t &0. Only the first few zeros of P(t) and the
approximate linearity of c((t) for small t will in-
fluence our final results. In this region a polyno-
mial in t may replace sinwn(t) in the numerator.
First, we proceed to project out partial waves
from the contribution of a single trajectory:

a((s)= —
J ~J'((1+~,)P(t), (

—
) . ())

We use the parametrization in Eqs. (1) and (2).
We measure s in units of s, to simplify equations.
The upper limit of integration can be replaced' by
-~ and we obtain'
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FIG. 1. Argand diagram, arbitrary scale, for l =40.
The parameters used are O.p=0.5, @~=1, e =0, g&0,
and pp=1, All units are in (BeV) .

where

b = [(I+ —,')'/4k'][(c+ a, lns)'+ a 'm'] ' (5)

The first term on the right-hand side of Eq. (4) is
real and signature dependent; it also has a smooth
energy dependence. The second term contains a
phase factor which increases with energy. The
term will describe circles in the Argand dia-
gram, and these will commonly be interpreted as
resonances. Figure 1 shows such a resonance
with Z =40.

Equation (4) should be investigated in three re
gions:

(i) b «1, small impact parameter. In this re-
gion partial wave amplitudes are smooth. In the
limit s —~ aZ becomes independent of l.'

(ii) b»1, large impact parameter. In this re-
gion partial waves are strongly suppressed by
the negative exponentials appearing in Eq. (4).
Semiclassically this corresponds to l »kR;
therefore, the particle is outside the range of
strong interaction forces so that no scattering
occurs. Any resonance in this region must have
vanishingly small elasticity. " The detailed pre-
dictions of Eq. (4) are not to be trusted. They
strongly depend on terms which we have neglect-
ed in Eqs. (1) and (2), and on the shape of P(t)

(iii) b =1. This is the intermediate impact-pa-
rameter region in which the scattering process
probes the outer regions of the interaction. In
this region the phase in Eq. (4) rotates rapidly
and gives rise to resonances.

We proceed to investigate the properties of
resonances appearing in region (iii). The l de-
pendence of the resonance energy can be ob-

Im ag (s)
il

AA~+ Ao = 217

or

(I + —,')' = 4(-,'-a, )k'[(c+ a, lns)'+ a,'w'] (s)

which for a crude parametrization of the p tra-
jectory, a, = 2, n, =1, and c =0, gives

l + —,
' = [s(m'+ ln's) ]'".

This analytic form should only be valid for
large l and s; at lower s, trajectories can be and
are approximately linear in s."

Next the total width of the resonance can be ob-
tained by considering the range in energy over
which the phase changes from 0 to n. Neglecting
logarithmic terms we obtain I - vs. This is con-
sistent with the width of a trajectory with Reo.- vs as obtained in Regge theory. "

The elastic width of the resonance is connected
to the radius of the circle in the Argand diagram.
For the trajectory obtained in the above parame-
triz ation,

a, -l -n, bs sel tot (1O)

or I'el-s '. This gives an elasticity which de-
creases like s

There are more apparent resonances for b =
2,

etc. These are suppressed in Eq. (4), by the
factor e ~ lns appearing in that equation. Their
contribution is of the order of terms which we
have neglected in Eqs. (1) and (2) and they may
be cancelled by these correction terms. We can-
not be certain about their interpretation.

It is unlikely that these resonances can be
created by an infinite family of linearly rising
trajectories. Such traj ectories rise more steeply
than vs. To create a series of resonances with l
—Ks and no resonances for l «Ks, linear trajec-

tained by equating the only rapidly varying phase
in Eq. (4) to +&@+2nw:

m[ba-, + a, ]= ~-,'w+ 2nv.

The sign depends on whether g is positive or neg-
ative. Picking g &0, we obtain for the first reso-
nance
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tories should have no coupling to sw at low l [re-
gion (i), l «vs], strong coupling to mw when l-Zs
[region (iii)], and no coupling again at l » Vs [re-
gion (ii)]. Such behavior seems unlikely. We can
not rule out a few linearly rising trajectories
which at high s will no longer couple to ~w be-
cause of their vanishing elasticity. These will
not be noticed at all in our high-s analysis.

So far we have discussed the contribution of a
single trajectory for spinless particles. In most
scattering processes there are additional compli-
cations. Consider first isospin: The resonances
we have discussed have unique isospin in the t
channel. By crossing, these correspond to a
combination of several isospin states in the s
channel which have identical energy and width.
A single t-channel trajectory thus gives rise to a
"generalized exchange degeneracy" in the s chan-
ne1.. In a similar way the condition that s-chan-
nel resonances are not exchange degenerate de-
mands a cancellation between two t-channel tra-
jectories and thus t-channel degeneracy. " If we
demand that no I= 2 resonances exist, we learn
that the Pomeranchuk trajectory, which contrib-
utes to I= 2 and cannot be cancelled by any other
trajectory, must contain no resonances when pro-
jected in the s channel. It must therefore have
no zeros in P, and thus no resonances arise.

Spin complications are similar to isospin be-
cause of the crossing of helicity amplitudes. We
thus have either nontrivial relations between s-
channel helicities and spins, or connections be-
tween t-channel helicities. We will elaborate
these points further elsewhere. When no cancel-
lation occurs we will also find degenerate trajec-
tories of opposite signature.

In our discussion we have left open the question
whether or not the resonances are "real. " We
can not continue our expressions to the unphysi-
cal sheet to check for poles in the S matrix. We
are left, thus, with only two clues to the reso-
nance nature.

(a) Do the residues of these resonances factor-
ize in the s channel? This is not a trivial ques-
tion and we can give no answer yet. '

(b) Can we produce these resonances in reac-
tions like nP —nmP? A recent paper by Chew and
Pignotti" gives hopes that a double-Regge-ex-
change mechanism will give rise to such reso-
nances in the final nn state.

Our argumentation about curving traj ectories
does not exclude the possibility of approximate
saturation, at low energies, with linear trajecto-
ries, as suggested by Mandelstam. " The curv-

ing trajectories we have discussed do not get into
conflict with the boundedness of the amplitude as
discussed by Khuri. "

The author is grateful to all colleagues at the
Weizmann Institute whose comments helped the
progress of this work.
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