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LORENTZ POLES IN EQUAL-MASS SCATTERING FROM ANALYTICITY AND FACTORIZATION*
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It is shown, by means of factorization, that the daughter Regge trajectories implied
by analyticity in unequal-mass scattering amplitudes constitute a single Lorentz pole
when they couple to an equal-mass channel. At zero energy the equal-mass elastic am-

plitude has the form constxD_, ()_o!(-2).

In the past few years, two different approaches
have been used to study the properties of Regge
poles and S-matrix elements at zero total energy
(#=0). The first involves analyticity' and the
second uses group theory.? The analyticity ap-
proach can be employed when the particles in the
u channel have unequal masses (like pion-nucleon
scattering). In this case an apparent conflict
arises between the presence of poles in the angu-
lar-momentum plane and the requirement of ana-
Iyticity in the total energy at # =0. The conflict
is resolved by introducing a set of daughter Reg-
ge trajectories at a(0)-k (¢ =1,2, +++), where
a(0) is the leading or parent trajectory.

If the masses in the # channel are pair-wise
equal, the foregoing conflict with analyticity does
not arise, but one may invoke the O(4) [or o(3,
1)] symmetry of the scattering amplitude which
results from the vanishing at =0 of @,,, the to-
tal center-of-mass four-momentum in the u
channel. Poles in the # channel are classified
according to irreducible representations of O(4),
and then each such Lorentz pole n(0) gives rise
to a sequence of daughter Regge poles with the
parent trajectory located at «(0)=#(0). The
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daughter sequence lies below @(0) with a spacing
of two units, @(0)-2n (2=1,2, ++-), if the scat-
tering particles are spinless, and a spacing of
one unit if the particles have spin. The ratios of
the residues of the daughter trajectories are also
determined by expanding the Gegenbauer function
in terms of Legendre functions. On the other
hand, the group theoretic approach cannot be im-
mediately applied to the scattering amplitudes
for unequal-mass particles, essentially because
the center-of-mass three-momentum becomes
infinite at u =0.

It is naturally desirable to attempt to bridge
the gap between the analyticity and group theoret-
ic treatments of daughter trajectories, and to
see if the analyticity and group-theory daughters
are really the same in some sense. Some insight
on this question has been achieved by relying
heavily on sophisticated group theoretic tech-
niques.®* However, it would be nice to have a dis-
cussion which embodies directly the tools of S-
matrix theory, such as analyticity and factoriza-
tion of residues. It is the purpose of this note to
provide such a discussion and to prove that the
daughters deduced from analyticity in unequal-
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mass scattering give rise to a single Lorentz
pole in equal-mass channels to which they couple.

Recently, it was shown that the properties of
daughter trajectories which follow from broken
(by u #0) O(4) symmetry can be derived entirely
from analyticity.* This could be accomplished by
considering unequal-mass scattering because the
properties of trajectory functions must be inde-
pendent of the particular channels to which they
couple. It was suggested at that time that it
would be difficult to show by taking an equal-
mass limit that the analyticity daughters corre-
spond to a single Lorentz pole. Nothing in that
discussion could eliminate the possibility that
the daughters represented a string of integer-
spaced Lorentz poles rather than a single Lo-
rentz pole. The stronger results of the present
paper come about by considering, in addition, an
amplitude which couples equal- and unequal-
mass channels, and by enforcing factorization of
Regge-pole residues.

The following development assumes that all
particles are spinless and deals with analyticity
and factorization constraints enforced simulta-
neously on two u-channel amplitudes having a
common unequal-mass channel. The first ampli-
tude corresponds to the unequal-mass elastic
process M+ u -~ M+ u designated UU. The second
amplitude involves the same unequal-mass chan-
nel scattering into an equal-mass channel, M+ u
—m+m, designated UE.

For the UU amplitude a leading Regge pole
which has the value a, at # =0 must, in order to
preserve analyticity at « =0, be accompanied by
daughters located at a,—%k (#=1,2,3,+++) at u=0.
The most singular parts of the daughter residues
are calculated in Ref. 4:

uuU _ UU(—l)kek[ T(ay+1) T
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where €= (M?-u2)2. The subscript # labels the
daughter trajectories and kaU/uk is the coeffi-
cient of the leading power s %% of the kth daugh-
ter.

We now proceed to derive the relation analo-
gous to (1) for the amplitude UE by enforcing ana-
lyticity at #=0. The parent trajectory a,(«) gives

T(k=-ay)(ay=k + 3)y,

a contribution proportional to Q—l—ao(u)(‘zu)
which for this mass configuration is
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where
T =M+ pu?+ 2m,

g 2= =0 ) u (M=)
U 4u ’

q_2=—-m?. (3)

Writing ¢ _; -a, in terms of a hypergeometric
function, the contribution of the ¢, trajectory to
the UE amplitude can be written as
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The need for daughters arises in Eq. (4) because
the coefficient of each power of X must be analyt-
ic at u=0. The expansion of F in Eq. (4) shows
that the singular parts of these coefficients are
of the form

()=2n on ay(u)—2n

@) " e x fu (5)

Thus, Eq. (5) shows the necessity of daughters at
ap(0)=ag0)-k, k=2rn (n=1, 2, ++-), with residues
kaE having the behavior ™ asu—0. We see
here that only the even daughters contribute to
the UE amplitude, a fact which anticipates the
known O(4) result that only even daughters result
from a single Lorentz pole in equal-mass scat-
tering. The full amplitude 7VE is thus a sum
over the parent and daughter trajectories:

ono n

T ” (s,u). (8)

The TkUE are the same as (4) with o, and y,UE
replaced by ap and kaE. A calculation requir-
ing that the coefficient of X% (0)=2% /7 in Eq. (6)
vanish leads in analogy to the similar calculation
in Ref. 4 to the following result:
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Assuming that the residues given by Egs. (7) and (1) factorize, we have the relation

(,, UE\2_, UU_EE
'}’k 'Yk '}’k ’

(8)

where ykEE represents the analogous Regge-pole residue in the process m +m —~m+m, designated
EE. Combining Egs. (7) and (1) we obtain the following formula for the residues of the equal-mass

amplitude EE:
k
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The contribution of all the even daughters to the EE amplitude is now given by
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At u=0 the 1,EE are given by Eq. (9), and then
it can be shown that Eq. (10) is proportional to
the expansion of a Gegenbauer function in terms
of Legendre functions of the second kind. Thus

%0, 2 ) =constD_ao(O)_21(—zu), (11)
where D_, _o' is a Gegenbauer function. The
function D-q(0)~2!, however, corresponds to a
single Lorentz pole at n = @(0) since the Gegen-
bauer functions are the O(4) analogs of the Le-
gendre functions. This completes the demon-
stration that the daughter Regge trajectories im-
plied by analyticity constitute a single Lorentz
pole in equal-mass scattering.

The very powerful role played by the assump-
tion of factorization of residues in this argument
should perhaps be re-emphasized. It is factor-
ization which insures that we are dealing with a
single Lorentz pole. Without this assumption, it
is very doubtful that one can prove that analytic-
ity daughters give rise to a single Lorentz pole,
as indicated in Ref. 4.

We remark that in Ref. 4 it is shown that the
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derivatives of the daughter trajectory functions
in UU scattering satisfy certain “mass formulas.”
We find exactly the same formulas when the
corresponding calculations are performed for the
UE process, except of course, the formulas for
the odd daughters cannot be derived by consider-
ing the UE process. If we had not found the same
formulas, there would be a serious inconsistency
between analyticity at # =0 and Regge theory.
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