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We report a numerical analysis of the electromagnetic wave equation with a saturable,
intensity-dependent, refractive index. The solutions show the dynamical self-focusing
of an intense optical beam through the focus. The transverse intensity profile develops
a complex ringed structure, the central maximum of which has many of the properties
of the small-scale filaments observed experimentally.

Experimental studies of self-focusing of in-
tense optical beams in liquids possessing intensi-
ty-dependent refractive indices have indicated
two apparently distinct regions of importance. '
In large-scale focusing, the beam contracts uni-
formly toward a point at some well-defined dis-
tance. Near this point however the contraction
stops and one or more rather stable filaments of
light are formed, the number of filaments de-
pending on the power. These filaments are said
to arise from a small-scale self-trapping mech-
anism. While large-scale self-focusing seems
rather well understood theoretically, there has
been considerable discussion about the origin of
the small scale filaments.

In this paper we report a numerical analysis of
the nonlinear wave equation which shows the dy-
namical formation of a small-scale "filament. "
We stress that it has not been possible to include
in this analysis the plethora of physical phenom-
ena known to be associated with small-scale self-
trapping. The significance of this work is that
filament formation is predicted by a model with
very little physical structure: We include only
the effects of saturation of the nonlinear index ap-
pearing in the wave equation.

P revious theoretical work has shown the exis-
tence of transverse intensity profiles which prop-
agate in a medium with saturable index without
changing shape. ' 6 These steady-state solutions,
with characteristic radius of about O. l p for CS„
have been associated with the small-scale trap-
ping, presumably because of their persistence.
However the process of trapping is inherently
dynamical and any theory of filament formation

based upon the stationary profile solutions must
explain how the beam evolves to such a profile
from an arbitrary input shape. Moreover, ap-
proximate analyses of the dynamical self-focus-
ing problem suggest that the beam radius oscil-
lates producing periodic foci, rather than ap-
proaching a steady-state value. ~'

Dynamical focusing solutions of the nonlinear
wave equation were found numerically by Kelley
for a nonsaturable, nonlinear refractive index.
To reduce the number of independent variables
in the problem, Kelley sought time-periodic, cy-
lindrically symmetric solutions. To solve the re-
sulting equation numerically with initial condi-
tions (open boundary), he ignored the second de-
rivative of the slowly varying amplitude E' with
respect to longitudinal distance z (see below for
notation). Unfortunately the approximations
made in this procedure are not valid when E'
changes rapidly within a wavelength, for example
near the self-focus. This is a serious impedi-
ment to quantitative studies of filament formation.

When the nonlinear index is saturable however,
an analysis based upon the paraxial-ray approxi-
matione indicates that for "easy" saturation the
first focus may be reached before the beam
shrinks to wavelength dimensions. Thus for a
medium which saturates rapidly, we may expect
Kelley's equation (with saturation) to hold up to
and beyond the first focus. Numerical computa-
tion is vastly simplified for this case because the
criteria for a stable computing scheme, which re-
quire smaller step sizes for larger intensities,
are easily satisfied even in the region of the fo-
cus.
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FIG. 1. Normalized on-axis intensity versus axial
distance in units of the near field length 2kao .
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FIG. 2. Normalized intensity (solid line) and refrac-
tive index (dashed line) versus radial distance in units
of the input radius ao.

Using Kelley's notation, the equation in ques-
tion is

QE 4 Q~g4 ]
+ +— + =0 1Bz» Br»' r* sr» 1+ IE*/E * I'

S
where r» =r/a„z* =z/2ka, ', E» = (e2/&f, )"'ka0E',
and 2E =e(E' exp[i(kz-rut) ]+c.c.}. Here ao is the
variance of the Gaussian intensity distribution of
the plane-wave input at ~ = 0, and Ez* is a dimen-
sionless saturation field which is about 10' for
CS,. Choosing the unrealistically low value E,*
= 10' and a very high initial input power I' = 333Pcr
to cause rapid focusing, ' we find numerical solu-
tions (obtained from a CDC 6600 computer) with
the following features: (1) The on-axis intensity
rises steeply to a maximum and then fluctuates
about a high average value. This is shown in Fig.
1 in which the on-axis intensity I*=E~*', normal-
ized to that at the input, is plotted versus ~*.
(2) Near the focus the transverse intensity pro-
file develops a ringed structure which becomes
increasingly complex beyond the focus as shown
in Fig. 2, which corresponds to z*=0.0141 (open
circle in Fig. 1). Considerable pains were taken
to ensure that none of this structure is simply a
result of instabilities in the computing scheme.

The total computed beam power remained con-
stant to within 0.1% for all z*. Details of the
mesh technique as well as numerical solutions
for other cases will be published elsewhere.
(3) The intensity profile has a central peak for
all distances computed (up to z/zf = 1.2). The
power in this peak at the focus is about an order
of magnitude greater than the critical power for
self-trapping and decreases slowly at greater
distances.

This behavior may be understood as follows.
As the beam propagates, the refractive index
near the axis rises at first but then becomes lin-
ear upon saturation. The resultant induced "con-
vex lens" is flat in the center and therefore tends
to focus incoming (still nearly parallel) rays into
a ring. The rays initially bent toward the axis
continue inward and give rise to a central maxi-
mum. The intensity in the ring also rises until
a new "flat" region is formed in the induced lens,
whereupon a new ring begins to form. This ten-
dency to form additional rings is consistent with
the result of Shen, AuYang, and Cohen~~ (inferred
from a somewhat different model) that it is ener-
getically favorable to form regions of high inten-
sity separated by regions of low intensity. At
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the last point shown in Fig. 1, there are nine ra-
dial maxima in the transverse intensity profile.

It is clear from the oscillations in the on-axis
intensity that the central maximum is not trapped
in a stationary transverse mode. The behavior
of this portion of the beam is more characteris-
tic of the periodic focusing predicted for satura-
ble media by the paraxial-ray analysis. This
analysis predicts that for weak oscillations of
the beam radius about its steady-state value,
successive minima in the on-axis intensity should
be separated by'

(P/P )
1/4

cr
s [(P/P )"'-1]"''

cr

where (as/a0)'= 0.273(P/Pc+s*'). Fitting the
central maximum with a Gaussian, for which
this formula is valid, we find z+*=3X10 which
is to be compared with the distance =2~ 10 3 be-
tween the two prominent minima in Fig. 1.

The central peak possesses many of the ob-
served properties of small-scale trapping: It
persists beyond the focus, is very intense, and
contains somewhat more than critical power. To
estimate its size for realistic saturation fields,
we may use either the paraxial-ray theory or the
"exact" stationary profile theory, both of which
yield characteristic transverse radii which scale
as Ez* '. Thus for E~~ = 10' we expect a central
peak of width r*= 5&& 10 or about 0.5 p, for a 1-
mm incident beam. This underestimate of ob-
served filament sizes (-5-10 p) seems endemic
to theories including only saturation of the non-
linear index. ' To the list of other mechanisms

usually invoked to explain this discrepancy we

may add that some of the rings near the center
may be experimentally unresolved or blurred by
other effects, giving an apparent filament size
much larger than that of the central peak.
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The ratio happ of the rate of decay X2 2x to the decay rate K& 2m has been mea-
sured to be happ

=(—2~7) x10

The main interest in t gppi the ratio of the
rate of decay K,'-2m' to the decay rate K,'-2~',
is the extent to which it departs from I g I', the
corresponding ratio for the decay to v+m . Any
difference is a measure of the amount of &T & 2

amplitude present in CP nonconservation. ' A

survey' gives I q+ I' = (3.6+0.2) &&10 '. Recent
measurements'&' of the neutral mode have given'

I goo I'= (18+,")X10 ' and' (24+ 5)&10 ', apparent-
ly demonstrating a difference between I q+ I' and

I
happ

I We report a new m casu re ment with the
result I g« I' = (-2 + 7)x 10


