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magnitude, but these are expected to be at least some-
what quenched by the environment.

An antiparallel moment on the 12 Be sites implies a
corresponding increase in the moment attributed to the

Cr. Cr dipolar fields could then become quantitatively
important (but only to the extent that there exists a mo-
ment on the Be). This does not affect our qualitative
conclusions.
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We present a modification of the two-dimensional Ising model which incorporates ran-
dom impurities. The specific heat of this model is infinitely differentiable even at the
critical temperature where it possesses an essential singularity. We find this specific
heat to be in perfect quantitative agreement with the smooth peak recently observed by
van der Hoeven, Teaney, and Moruzzi for T & T~ in the specific heat of EuS.

Recently very precise measurements of specif-
ic heats near the Curie or Noel temperature Tc
have been carried out by several investigators:
van der Hoeven, Teaney, and Moruzzi on EuS, '~

Handler, Mapother, and Rayl on Ni, ' Teaney,
Moruzzi, and Argyl on RbMnF„4 Keen, Landau,
and %oU on dysprosium aluminum garnet, ' and
Robinson and Friedberg on MnBr~. These ex-
periments share the striking property that the
measured specific heats are smooth functions of
the temperature even at Tc. In this paper we ex-
plore the possibility of attributing these smooth
specific heats to the presence in the sample of
random impurities.

These recent experimental results are some-
what puzzling if they are contrasted with the usu-
al theoretical treatments' and models of (anti)fer-
romagnetic phase transitions. These theories
predict that at Tc the specific heat will have
some sort of observable singularity that is ex-
pressible in the form

const ln I T-T I or const I T-T
c C

where

pQO — 2

R(5) =) dy, lnK (p)-(p+1)
0 85 (3)

%e find that the specific heat at Tc is an infinite-
ly differentiable function for which the form (1)
does not provide an adequate description.

The model we consider is the two-dimensional
rectangular Ising model in which all horizontal
interaction energies F-, are fixed and all vertical
interaction energies E,(j) betwen the j and j+ 1

row are the same. However, E2(j), j = 0, 1, 2,. ~ ~,
are considered to be independent random varia-
bles. The calculation of the specific heat which
is based on recent work of Furstenberg' is rath-
er lengthy and is reported elsewhere. ' The final
result for a particular narrow distribution of
bonds E, of width se is that, to leading order in
go, near Tc the specific heat is given approxi-
mately by

(2)

where a and the constants may be different for T
above or below Tc. However, these treatments
are all overidealizations of the true physical sit-
uation because they deal with completely pure
materials. To study the effect of random impuri-
ties on the form (1) in a concrete fashion we have
constructed a modification of the two-dimension-
al Ising model which includes random impurities.

c, and c, are known constants, and Kg(p) is the
modified Bessel function of the third kind of or-
der 5. It can be shown that the integral R(5) of
(3) has an essential singularity at 5 =0. It has
been computed numerically and is plotted in Fig.
1.

When 5 becomes large, the specific heat (2) re-
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FIG. 1. The function R(6) and its asymptotic be-
havior ln26

duces to

c [-1 n( T/T —1)+ln2+c ].
C 2'

This specific heat appears to have a logarithmic
singularity at T~. Such a result is to be expect-
ed since when 5 is large, the effect of the impuri-
ties is small and, to leading order in Ml, the spe-
cific heat should have the logarithmic divergence
of Onsager's result. "

We may gain further insight into the specific
heat (2) if we compare it with the specific heat of
EuS. Van der Hoeven, Teaney, and Morruzii
have shown that when T is sufficiently larger
than T, the specific heat is very well described
by (5) with c, = 4.13 J/mole deg and c, = —1.30. If
in addition we choose gg =2.68x10 ', we see in
Fig. 2 that the specific heat (2) is in beautiful
quantitative agreement with van der Hoeven's
measurements. " On the basis of this beautiful
agreement, we propose that random impurities
are responsible for the observed "roundings" of
specific heats in Refs. 1-6.

Since EuS is microscopically very different
from a two-dimensional Ising model, "the effect
of random impurities must be rather insensitive
to the details of the interactions. The agreement
of Fig. 2 indicates that the important point is the
"logarithmic singularity" in the specific heat for
both cases, Onsager's solution' on the one hand
and the experimental measurement for T/Tc 1-
&10 on the other. We also believe that when T

Tc, random impurities influence the detailed
shape of the specific heat. However, detailed
comparison is more difficult.

In order to exclude the possibility that other ef-
fects, such as long-range forces, "are responsi-
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FIG. 2. Comparison of the impure-Ising-model spe-
cific heat with the observed specific heat of EuS for

z'c

ble for the observed roundings of specific heats,
we propose that specific-heat measurements sim-
ilar to those of Refs. 1-6 be carried out for sev-
eral samples of the same material with different
concentrations of impurities.

There are several different types of random
impurities which broaden specific-heat singulari-
ties. We mention three:

(A) Chemical impurities in the usual sense.
Certainly in the rare-earth compounds such as
EuS and dysprosium aluminum garnet we expect
trace impurities of other rare earths to be pres-
ent because it is very difficult to purify rare
earths.

(B) Vacancies and dislocations in the lattice.
Therefore the stoichiometry of compounds should
be rigidly controlled and single crystals should
be used if one wants to reduce the amount of ob-
served specific-heat broadening.

(C) Different isotopes of the same element. '~

For example, the natural abundances of nickel
a,re 68$ of Ni'~, 26% of Nieo, 1% of Ni~', 4% of
Nie', and 1% of ¹~.

Besides the qualitative explanation of smooth
specific heats which our model provides, the spe-
cific heat (2) has several more general quantita-
tive features which may be compared with exper-
iment. From (4) we see that an effect of impuri-
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ties is to determine a temperature region in
which the specific heats deviate appreciably from
that of a pure Ising model. At least when w is
small the only effect of changing I is to change
the scale of this temperature region; once this
change of temperature scale is made the shape
of the specific-heat curve does not further de-
pend on the impurities. It is very reasonable to
suppose that this is also the case in the actual
experimental situation. In other words, the spe-
cific heat is a function of the single variable (T/
T l)7(w-). One simple form of y(w) is

A'
7(w) = constw

where A' is defined to be the broadening index of
the transition for T & T (A may be analogously
defined for T & T~. If A and A' are both defined,
the requirement that the specific heat be contin-
uous at T shows that aA =a'A'). The broaden-

C
ing index is a quantitative measure of the influ-
ence of random impurities on specific heats. If
our model is completely relevant to EuS, then A'
=2. These and other broadening indices which
may be defined for the spontaneous magnetiza-
tion, zero-field susceptibility, etc. are the sub-
ject for future study.
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