
VOLUME 21, NUMBER 8 PHYSICAL REVIEW LETTERS 19 AUGUsT 1968

ty space. The latter should strongly effect the
peaks near n(d~ at high densities. ' Interactions
higher than second-order have also been ob-
served, and can be explained by an extension of
the theory presented here. A detailed account of
the present work is in preparation and will be
published at a later date.
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A method of calculating the transport coefficients of a degenerate Fermi system is de-
scribed and compared with previous approaches. Applications to dilute mixtures of He3

in liquid He4 and to nearly ferromagnetic Fermi liquids are given.

It has become clear that the derivation of ex-
pressions for the transport coefficients of a de-
generate Fermi system should be re-examined.
At low temperatures, mean free times may be
expanded in the form"2

1/7 =aTI+bT,

where T is the absolute temperature and a and b

are coefficients which depend upon the transport
process. Two methods have been used to obtain
7. One is a direct approximate solution of the
Boltzmann equation, ~y~ the other a variational cal-
culation, '~~ and they give different values of a and
b. The discrepancy is particularly serious for
the thermal conductivity ~.

In this Letter, we give the results of a more
accurate approximation and discuss its relation-
ship to the earlier approaches. During the course
of this work, Brooker and Sykes' and, indepen-
dently, Jensen, Smith, and Wilkins, ' found a way

of calculating a exactly. The latter authors also
applied their results to dilute mixtures of He~ in
liquid He, using the approximate scattering am-
plitude of Bardeen, Baym, and Pines. The meth-
od mhich mill be described here is much easier
to apply and gives simple explicit expressions
for both a and b, with an error which is of the
order of 1% for systems of physical interest.

The collision term in the linearized Boltzmann
equation has the form of an integral operator
K,(x, f) acting upon a function q(f), which is pro-
portional to the difference 6n between the distri-
bution function and its equilibrium value. ' Here
t is the variable (e p)/kl3T, whe-re e is a quasi-
particle energy, p, is the chemical potential, and
kB is Boltzmann's constant. [See Eq. (7.19) of
Abrikosov and Khalatnikov. ~] The method which
we have used is based upon the fact that, for the
viscosity q and spin diffusion D, q(f) is an even
function of t and that the even eigenfunction of
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K,(x, t) corresponding to the largest eigenvalue
is a constant, independent of t. It turns out that,
for the important values of t, q(t) does not differ
very much from a constant, and so its overlap
with the other eigenfunctions is small. In addi-
tion, the eigenvalues of K,(x, t) form a decreas-
ing set. Therefore, it should be a good approxi-
mation to replace K,(x, t) by a separable kernel
which projects onto the principal eigenfunction.
The same is true of the thermal conductivity, ex-
cept that q(t) is an odd function of t and the rele-
vant eigenfunction is a constant times t.

The Boltzmann equation may then be solved ex-
plicitly and, to lowest order in the temperature,
it is found that q(t) =Q(t) for D and g and q(t)
= tQ(t) for v, where

Q(') = 'qp

1 1

(1+ t'/2) (2)

Here ~A is the mean free time calculated by
Abrikosov and Khalatnikov~ or Hone~ and T@p is
the lifetime of a quasiparticle on the Fermi sur-
face-both evaluated to lowest order in T. Ex-
pressions for these quantities are given in Ref.
2. The factors 1+tm/vT come from integrals of
Fermi functions, as usual, and the average
(f(t)) is defined to be

f dtn(t)[1-n(t)]h(t)f(t)
&f(t)) =

f dtn(t)[1~(t)]h(t)

where n(t) is a Fermi function and h(t) = 1 for D
and Ti and h(t) = t' for E.

Equation (2) may be understood as follows. As
a quasiparticle, with energy kBTt above the Fer-
mi surface, moves through the medium, it un-
dergoes a series of two-body collisions. If the
background quasiparticles are assumed to be in
thermal equilibrium, Q(t) is given by Tqp(1+ t'/
n ) ', which is the same as the relaxation time
for a single quasiparticle added to the system.
This is the first term on the right-hand side of
Eq. (2). In a transport process, the disturbance
of the distribution function of the background par-
ticles, which is proportional to TA/(1+ t /+),
may not be neglected and this gives rise to the
second term in Q(t). By definition, TA con-
tains a contribution from the incident particle
which has already been included, and Tqp ' is

A QP
qP 1+ tm/2 (1+ t'/2) (4)

This expression is for the lowest order in tem-
perature, corresponding to aT' in Eq. (1).

The variational approximation'~' amounts to re-
placing 1+t'/~' by (1+t'/v') in Eq. (2) and then
Q(t) is TA/(1+t'/rr'), which is the same as the av-
eraged value for the background particles. In
this approximation, Eq. (4) gives

/(1+ t'/v').
var A

(5)

Abrikosov and Khalatnikov and Hone' additional-
ally neglect t'/n'.

It should be noticed that Tqp, unlike TA, is in-
dependent of the transport process. Thus, for
example, according to Eq. (4), the spin-diffusion
coefficient D depends upon parallel spin scatter-
ing (through Tp) although, in the earlier ap-
proximations, it did not.

On evaluating the averages in Eq. (4), it is
found that

1 2 3'p "' 'qp "('A 'qp)

for D and g and

w 5
0 4 QP 12 A Qp

for ~.
Since Tqp & P, it can be seen that Tp& v var.

From the definitions of yQP and 7A, it is easy
to show that v~p/TA has upper limits of 3 for q,
4 for D, and —, for ~, whatever the quasiparticle
scattering amplitude. It follows that Tp/vA is
less than 0.97 for g, 1.04 for D, and 0.57 for a,
so that y, can come close to YA for D and g, but
it is always considerably less than 7A for ~. The
upper limits for Tqp/TA are extreme cases and,
in practice, gTPTA, so that Tp/TA = m' for D
and Tt and T p/TA = (3-—,'w') for z.

Equation (4) agrees with the exact solution, '
when TQp =7g. The maximum error occurs
when T@p/TA is a. maximum, and it is 4.6% for
Tt, 7.9% for D, and 1.8% for z. Once again,
these are extremes and, since usually ~QP =v~,
the typical error in Eq. (4) is much smaller,
perhaps 1%.

there to remove it. The mean free time is given
by

Tp
= &Q(t))
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The most interesting systems for applications
of Eq. (4) are dilute mixtures of He' in liquid
He, for which the experiments have been car-
ried out in most detail at He' concentrations of
1.3 and 5%, and analyzed' in terms of an effec-
tive He -He' interaction, assumed to be a hard
core with a longer range attractive square well.
The potential parameters were chosen to fit the
spin-diffusion data using T~, and other quantities
were predicted. %e have now repeated these cal-
culations using To instead. The required change
in the potential is rather small, and the equilib-
rium properties are substantially as before. '
The values of zT in erg/cm sec changed from
19.1 at 1.3% and 64 for 5% using v~ to 12.1 at
1.3% and 33.3 at 5% using vo. Experimentally, v

KT is 11 at 1.3% and 24 at 5%, so that the new
solution constitutes a considerable improvement.
There is still a disagreement between theory and
experiment for ~T at 5% concentration, but there
is little doubt that this could be removed by vary-
ing the shape of the potential from the original

form, which was chosen for ease of calculation.
It does not seem to be worthwhile to do so at
present, since the existing data clearly are far
from being sufficient to determine the potential
uniquely.

%e now consider the calculation of the coeffi-
cient b in Eq. (1). This depends upon scattering
with small energy and momentum transfer, ' and
it is particularly important for nearly ferromag-
netic systems. ' The integral operator in the col-
lision term of the Boltzmann equation has to be
calculated to first order in T and becomes K,(x, t)
+ TK,(x, t). An expansion in powers of T corre-
sponds to an expansion in K,(r, f) and it is suffi-
cient to work to first order. Then the approxi-
mation described above may be applied to KOQ, t),
but it is not necessary to use it for K,(x, t). The
assumption that Q(f) does not differ too much
from a constant turns out to be just as good as
before, so that the errors should be small. For
the present, we shall merely quote the results
for a nearly ferromagnetic system. '~'

For the spin diffusion,

(8)

For the viscosity,

1 1 T--—=-0056" ' .hT

1 3

0, QP
1+~@ T

(9)

For the thermal conductivity,

T 8

135~g(5) k r' —,'Z
1-0.1642 + 0.08081+ 4ZQ T0 TQ'

(10)

Here, Zo is an average forward-scattering am-
plitude and appears in the same way in Ref. 6.
The degeneracy temperature is denoted by TF
and g(p) is Riemann's zeta function of argument
v. All of the coefficients of vip'/v0' and the co-
efficient of vip/v0 in Eq. (10) were obtained by
numerical integration.

The variational approximation gives Eqs. (8)-
(10) with v~p = 0. The numerical coefficients dif-
fer from those obtained by Rice, ' since he made
additional assumptions. ' The method of Ref. 2
is an extension of that of Abrikosov and Khalatni-
kov and it too omits terms involving T~p and
gives different numerical coefficients.

Otherwise, the main qualitative differences

from the previous results'~' are that (a) now
there is a term proportional to T' in T ' for the
viscosity, and (b) since vip and vo appear, the
coefficients of the T' terms do not depend only
upon the forward-scattering amplitudes. '

Within the allowed range of values of v~p/v~,
the corrections from the terms involving vip
for D in Eq. (7) are less than 35% and, typically,
are about 20%. For K they are less than 10%.
For q, 1/v 1/vo is about-0.03 &qp'/v 0' times 1/
v1/vo for v. T' h—us, usually, the T' term in q
will not be large, although it could be significant
if vip/v0 took on its extreme value of 3.1.

A detailed account of these calculations will be
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The phonon-dispersion curves in silicon are calculated from a microscopic model by
a dielectric screening theory. The part of the dynamical matrix arising from the diago-
nal part of the inverse dielectric-function matrix is calculated just as in metals; the off-
diagonal part is approximated by interactions of ions and bonds treated as point charges
in Phillips's bond-charge model.

Neutron-scattering experiments have measured
the phonon dispersion curves a&(q) in diamond, '
silicon, and germanium' for wave vector q along
the principal symmetry directions [100], [111],
and [110]. So far the data have been analyzed on-
ly in terms of classical spring models. A suc-
cessful analysis was carried out for diamond by
McMurry et al. using only bond-stretching and
-bending force constants derived from hydrocar-
bons. However, in order to fit the dispersion
curves for Si and Ge, ' distant neighbor forces
must be introduced requiring many parameters.
Even the most successful model, the Cochran
shell model, ' requires 11 adjustable parameters'
to fit (o(g) along all the symmetry directions in
Si. In this Letter we report the results of the
first microscopic calculation of ur(q) for Si. The
approach utilizes ion-core properties based on
free-ion quantum term values as well as valence
screening properties based on the quantum elec-
tronic spectrum of the crystal. One parameter
affecting only longitudinal modes is used in the
present calculation.

!
The microscopic dielectric theory for the cova-

lently bonded crystals closely resembles the di-
electric-screening approach'~' which has been
used in metals such as Na and Al. In the calcula-
tions for metals, the dielectric function is that
of the free-electron gas, and the ion-core poten-
tial is represented by a model potential based on
free-ion spectroscopic term values. ' An identi-
cal approach using free-electron screening theo-
ry is not satisfactory in covalent crystals as is
indicated by the fact that such loosely packed
structures are not stable against shear in the
presence of nearest-neighbor central forces on-
ly." This instability against shear has been ver-
ified by one of our calculations for Si which used
the free-electron dielectric function to screen
the ion-ion interactions. As expected, all TA-
mode frequencies were found to be imaginary.

A general expression, "valid in any crystal,
for the dynamical matrix in terms of the com-
plete inverse dielectric-function matrix e '(g
+G, q+G') is

s
D (g) =D (q) -6 g D (0) I

——', (la)np np np n7 (My=1 P
where

D (q) = »» ~, s IP+Gl v. (Iq+Gl) exp(iG R )
1 0 (q+G)(g+G') —2 n

~p I M ''4~e' », I + 'I' g A

xe (q+G, q+G') lg+G'I v. (Iq+G'l)exp(-iG" R ). (lb)


