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FREE ENERGY OF AN ASSEMBLY OF NONSPHERICAL MOLECULES WITH A HARD CORE
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The free energy of an assembly of slightly nonspherical molecules with a hard core is
expressed as the sum of the free energy of a system of equivalent hard spheres plus cor-
rection terms related to eccentricity. An estimate of these terms is made for ellipsoid-
al molecules.

The contribution of noncentral interactions to
the thermodynamic properties of fluids has been
formulated by several authors either as a pertur-
bation expansion in reciprocal powers of temper-
ature, starting from an assembly of spherical
molecules, ' or by introducing an effective tem-
perature-dependent potential with central sym-
metry. Such treatments are actually limited to
weak noncentral forces.

The kind of systems discussed here is com-
pletely different: We consider molecules inter-
acting through a hard-core anisotropic potential,
i, e. , strong noncentral forces. When the anisot-
ropy is small the free energy of such a system
may be expressed by means of properties of an
assembly of hard spheres.

Consider the configurational integral of N hard
spheres of diameter D, :

Q0
= fdr 11 rj(r D), . .-N

2j

where r2j is the distance between molecules i,j
and q(x) equals 0 for x &0 and I for x&0. For an

assembly of axially symmetric molecules inter-
acting through a hard-core potential we similarly
have

r N
Q = fdr d&u IIg(r. D. , ), ,

-
2j 2j

'
2j

where D,& =D(&u;, cu&) is the shortest distance of
approach of two molecules with orientations +i,

We next write

D(~, ~') =D.[l+ y(~, ~')]

with y defined in such a way that its a priori
average (y) over all orientations is zero; we sub-
sequently call D, the diameter of the equivalent
hard sphere. Expanding lnQ in terms of y we ob-
tain In[(4w)NQo] as zeroth term. In first order
we have

6 InQ = -2(y)D [N(N-I)/Q ]0 0

x fdr 6(w -D ) g'q(r D)-.
12 0 . . ij 0

2j
which vanishes as (y) =0. The second-order
term is equal to

6 In@ =D [N(N I)/Q ](2(y )fd-P6'(r '-D ) II'q(r . D)-.2 2 N
0 0 12 0 . .' ij 0

2j

N
+(N 2) fdr (y -y )6(r -D )6(r -D ) II'q(r. -D )f,12 0 13 0 .. ij 0

2j

where (y»y») depends on the angle u between r» and r» Followin. g Pople' we expand y in spherical
harmonics:

')=ZZZ, (, (, ), ( ', '),
l l'm
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l-Im I ~

with l, l'~ 0, Im I& min(l, l'), y~, =0, and ylli Im I
real. 0, p and &', p' specify the orientations of the

axes of the two molecules with respect to the line joining their centers. This gives

(2)

Noticing finally that (1) is expressible in terms of the pair and triplet distribution functions of hard
spheres f,(r) and f,(r», r», r»), we find that the Helmholtz free energy of the system is equal to that
of a system of equivalent hard spheres at the same density p, plus a correction per molecule,

Af/kT= ,'(P)41-rpD ' r~f (—r)
0 d 2 =D

sQ-yl00 (»pD0') f~ &1'(cosu)f (D, D, 2D sin~) sinudu

to the second order in y. (The same correction
holds for the Gibbs free energy at fixed pres-
sure. )

At low density only the first term of Eq. (3) is
relevant and hf/k T = 2@pDO'(y ). At high density
both terms of Eq. (3) are expected to be signifi-
cant. For a dense fluid of hard spheres (0.5 &p
&0.9) r f2(r) is a decreasing function near r =Do
and the first term of Eq. (3) is negative. In the
solid region (1.0 &p &&2), however, r'f, (r) ulit-
mately increases with r near r =D„when the
close packing is approached, 3 and the first term
of Eq. (3) is positive. The behavior of the sec-
ond term of Eq. (3) is hard to anticipate because
it depends on the detailed form of y(~, v').

As an illustration consider prolate ellipsoids
with principal axes a and b (a&b). For a suffi-
ciently small anisotropy e =(a b)/b, the-only sig-
nificant coefficients yll~ Im I

are y,oo =y», = &/3+5
+O(e ). The relation between D, and the volume
v of such an ellipsoidal molecule is

Af/kTF
= -1.37+0.01+1.58+0.02=0.21+0.03 (f)

= -2.14+0.03+ 2.52 +0.05 =0.38 +0.08 (f)

= -0.03 +0.02+4.59+0.07 =4.56+0.09 (s).

&f is positive in each ease but very small in the
fluid region because of a large compensation be-
tween the two terms of (3): For e =0.1, 6f/kT
=0.002 and 0.004, respectively. In this case the
equivalent fluid of hard spheres with diameter D,
seems an excellent approximation. In the solid
region, however, &f/kT is much more impor-
tant (0.046 for e =0.1) and should be retained.

The present note is but a preliminary one:
Other types of regid molecules as well as the ex-
tension of the formalism to mixtures and its com-
bination with scaled-particle theories are pres-
ently under investigation.

wD, '/6 = v [I + (2/15) e'+ O(e4) ].

In the low-density limit our formulation agrees
with the results of Isihara for the second virial
coefficient. At higher densities hf was evaluat-
ed numerically from data on f, and f~ obtained by
applying the Monte Carlo method to a system of
108 hard spheres. ' For p =0.77 254 (fluid),
0.83 685 (fluid), and 1.0000 (solid) we obtained,
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Experimental and theoretical evidence of resonant and nonresonant mode coupling of
cyclotron harmonic plasma waves is presented.

Quasilinear theory and its extension to include
wave-wave scattering (mode coupling) shows that
plasma waves may interact and scatter in the fol-
lowing ways: (a) resonantly, namely, ~k, + &uk,

(b) nonresonantly, namely, ~k, + ~k,
The latter process produces "virtual"

waves which can play an important role when in-
teraction with the background particles is possi-
ble. Here k describes a normal mode of plas-
ma oscillation with frequency & and wave vector
k. ~

2

The purposes of this Letter are (1) to report
the observation of enhanced production of second-
order fields with harmonic and sum frequencies
in the vicinity of electron cyclotron harmonic fre-
quencies in experiments where plasma waves are
excited by external signals and (2) to present re-
sults of mode-coupling calculations which show
that the experimentally observed resonances can
be interpreted as manifestations of both resonant
wave-wave scattering and nonresonant wave-
wave -particle scattering.

The experiments have been carried out in a he-
lium discharge in a magnetic field. Typical plas-
ma parameters are as follows: background pres-
sure 3x10-s Torr, electron density 108 10io

cm ', and electron temperature Te - 5-6 eV. We
note that the density is a function of discharge
current and magnetic field.

The experimental setup is shown in Fig. 1 (in-
set). Radio-frequency signals f„f„ in the range
200-700 MHz, are applied via capacitors, atten-
uators, and filters to one of two antennas which
are aligned parallel to the magnetic field (1% uni-
form in the vicinity of the probes). The antennas
are immersed in the uniform plasma region.
The output of a receiver, f„which is tuned to
the sum ( f, +f,), difference ( f, -f2), or harmonic
frequencies (nf, or nf, ) of the injected signals,
alternatively, is monitored by the vertical de-
flection of an XY recorder. The horizontal de-

flection of the recorder is directly proportional
to the magnetic field which can be varied contin-
uously in the range 0-500 G. It has been shown

previously that probes such as those utilized
here can excite electrostatic cyclotron harmonic
waves with wave vectors k such that k = (k~, &

II

= 0), where k
II

= (k' B)/&.~ '
By proper filtering, we have been able to en-

sure that neither mixing of the applied signals in
the receiver, nor noise emitted by the plasma in
the absence of the applied signals produced more
than negligibly small deflections on the XF re-
corder. By contrast, when mixing of the exter-
nal signals occurred in the presence of the plas-
ma, a large increase in the emitted signaI oc-
curred at critical magnetic fields, as shown in
Fig. 1. Such results could be obtained with the
received connected to either of the two probes,
and the probes could be moved approximately 4

cm radially without changing the structure of

Cl
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FIG. 1. A typical output of the receiver as a func
tion of magnetic field. Injected signals: fr=520 MHz,
f2=450 MHz. Receiver is tuned to fr+f2=970 MHz.
Peaks a and b corresPond to 2~1 = 4uc and 2~2 = Mc,
respectively. Note peaks at ~1+cu2 = 3~c, Mc. Peaks
B-n correspond to Bernstein modes associated with
~1+~2=n~c. Peak c is at 2~2=2~c
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