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We reject events with pfigfito & 2200 (MeV/&) deg,
where pf;t and pfit are the fitted momentum and veloc-
ity of the "unmeasured" pion, and 8 is the space angle
between its fitted and measured directions.

The rate and photon spectrum for this process have
been calculated by M. Beg, R. Friedberg, and J. Schultz,
as quoted by P. Franzini, L. Kirsch, P. Schmidt,
J. Steinberger, and J. Piano, Phys. Rev. 140, B127
(1965), and have been previously verified (with 27
events) by E. Bellotti, A. Pullia, M. Baldo-Ceolin,
E. Calimani, S. Ciampolillo, H. Huzita, F. Mattioli,
and A. Sconza, Nuovo Cimento 45A, 737 (1966).

For example, a change in t 4 I of +0.05 && 10 sec
gives a change in x of only+0. 01+0.02i.

Hosenfeld, Barash-Schmidt, Barbaro-Galtieri,
Price, Soding, Wohl, Roos, and Willis, Ref. 2.

~In a preliminary report on these data [B. R. Webber
et al. , University of California Radiation Laboratory
Report No. UCRL-18135, 1968 (unpublished)], we gave
item 3 (overall y test) more weight than it deserves.
Also, we had not then incorporated the charge ratio in-
to our likelihood function.

D. G. Hill, D. Luers, D. K. Robinson, M. Sakitt,
O. Skjeggestad, J. Canter, Y. Cho, A. Dralle, A. Eng-
ler, H. E. Fisk, R. W. Kraemer, and C. M. Meltzer,
Phys. Rev. Letters 19, 668 (1967). We change the sign
of Im(x) given in that paper, since the value they used
for 6 was positive, not negative as stated in their foot-
note 10 (A. Engler and H. E. Fisk, private communica-
tion).

R. P. Ely, W. M. Powell, H. White, M. Baldo-Ceo-
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Fry, and S. Natali, Phys. Rev. Letters 8, 132 (1962);
and G. Alexander, S. P. Almeida, and F. S. Crawford,
Jr. , ibid. 9, 69 (1962}; B. Aubert, L. Behr, F. L. Ca-
navan, L. M. Chounet, J. P. Lowys, P. Mittner, and

C. Pascaud, Phys. Letters 17, 59 (1965); M. Baldo-
Ceolin, E. Calimani, S. Ciampolillo, C. Filippi-Filo-
sofo, H. Huzita, F. Mattioli, and G. Miari, Nuovo Ci-
mento 38, 684 (1965); Franzini et al. , Ref. 5; L. Feld-
man, S. Frankel, V. L. Highland, T. Sloan, O. B. Van
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The decay rate and the energy asymmetry of the p particle observed in the strong de-
cay X

—q+2x are discussed in the context of SU(3) QSU(3) chiral dynamic Lagrangian.

The purpose of this note is to discuss the
sources of discrepancy in the chiral dynamic
prediction of the slope of the Dalitz plot distribu-
tion for the strong decay p'- pun and to develop
a Lagrangian which might explain the energy
asymmetry for this decay. This process is of
particular interest, since it provides us with a
direct test of chiral dynamics in the domain of
strong interaction physics.

The basic idea in chiral dynamics is to con-
struct a Lagrangian in which there is a chiral-
invariant part and a part in which the chiral sym-
metry is broken in a definite way. Usually the
chiral invariance is broken in such a way that
the hypothesis of the partial conservation of axi-
al-vector current (PCAC) is satisfied. Because
the status of scalar mesons is presently quite
ambiguous, we wish to adopt a formalism which
does not require the presence of these fields.
As a result of this formalism the Lagrangian be-
comes a highly nonlinear function of the fields.
In a sense, one assigns fields to nonlinear real-
izations of the chiral group under consideration.

Let us adopt a tensor notation in which the up-
per (lower) indices transform cogrediently (con-

tra, grediently) and the undotted (dotted) indices
refer to the transformations generated by Qg
+Q~' (Qg-Qy') where'

=fd xV (x, t)
A.

A. p=0

Q =fd xA (x t).5 3
p=0

We denote by M the pseudoscalar complex

M ~ = (M ) = (Z+tli), n, P= 1, 2, 3, (2)
e Pf

where H is the usual 3X3 pseudoscalar meson
matrix and Z is to be determined' from the con-
straint

Z +II2=f2

where f' is a c-number constant.
Let us first analyze Cronin's model. In this

model one gets a constant matrix element for
the decay X

—rlmw and a decay rate of (6.8+ 1.5)
MeV, which is too large. From the experimen-
tal data available at present it seems that this
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decay matrix element has a small energy dependence. ' We would like to show that if one constructs a
Lagrangian similar to Cronin's model —that is, one which has a chiral-invariant kinetic energy term
(like Tre M&~M ) —plus a few nonderivative breaking terms —there will be no slope in the Dalitz-plotxe r&
distribution of the decay. Consider a Lagrangian

L = —,'8 M ~ 8 M + nonderivative breaking term.
P

Because of mixing, the g and gp are given by

cos ~ $p sin ~,

+p pp cos]9+ g sin&.

The invariant part of the Lagrangian contributes to the p'yg interaction a term

~, cos26'+
2 2

[~ 0 s (X'I))+(s 0) XR+P s Xs 0]
1 sin28 2 p 2 2

(6)

The contribution of the breaking term, being purely nonderivative, can only be of the form of a con-
stant times p gX. Thus in this nonderivative breaking U(3) 8U(3) model we will get

(xn)+(s p) xn+p s xs 6+&p xn],
2 2 2 p 2

P XR

where E is an arbitrary constant. On the mass shell this is equivalent to

2 + 2

2 p 2 2 21+ [e 0 (X'0)™ P XV+2(s P) X7)]0 xn 2m 2
7T

(8)

This gives no slope in the Dalitz plot distribution
whatever & might be. To explain the experimen-
tal data, therefore, one must consider a La-
grangian with at least one additional term con-
taining derivatives of fields.

We will now digress a little from the chiral dy-
namics and consider the form of the p'Xg La-
grangian from a phenomenological point of view.
One can easily prove that, for this decay, the
most general Lagrangian with not more than two
derivatives of the fields can have only two arbi-
trary parameters, and can be written as~

I. , = const[a p s (X'll)
2

X'9

2 2 2-m P X7)+g(s P) X9],jj

+ const(s p)'Xq,Sch

where I-Sch is the Lagrangian derived by Schwing-
er' from his "minimal" method. The second
term could be interpreted as an anomalous term

in Schwinger's model. This gives us an ampli-
tude

A & p= const[1-(h/m ')S]6x-W w uP'

where

s=[(p ) '(p ) ]mn vP 2 1.-g

From the available experimental data we see
that a wide range of values for h and hence for g
is allowed. In particular, g = 0 (Schwinger's
choice) seems to fit the present experimental da-
ta. '

Let us now consider the case of a SU(3) SU(3)
Lagrangian. We have said before that we must
have other derivative terms in the Lagrangian
besides the kinetic energy term. We would also
like to have a minimum number of breaking
terms which will produce all the masses exactly
and which, at the same time, will satisfy the hy-
pothesis of PCAC. Subject to all these condi-
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tions we have as our Lagrangian'

v A. Tv A. T vf.=-,'(I-5-e)& M, 8 M +y(e M. M. M. +H c )
V A. X Tv A. T V

+—(e & M 8 M ~ M ~ +H c )+,(& M . & M detM+H c )+o.'Z +13& . (12)
A. TV A P, 7 V E A. P. V

4f A7v V. X 7' v 4f' g v 0 8

Here" e, P, y, 6 and & are arbitrary parame-
ters of the theory, of which the first four will be
fixed by the observed 0 meson mass spectrum.
There are only two breaking terms in the La-
grangian which transform as members of (3, 3~)
C3(3*,3) representation, and are such that the
chiral SU(2)jgISU(2) is broken only by the finite
pion mass. The difference between this and Cro-
nin's model should be noted: In Cronin's model
(i) 5 and e terms are not present, (ii) the SU(3)
C2I SU(3)-invariant y term"' is represented by a

term, and (iii) an additional breaking term
II,II, is present.

We note that in this Lagrangian y and 6 terms
serve to produce a mass difference between the
singlet and the octet of mesons. These terms do
not contribute to the scattering amplitudes of
particles within the octet. Similarly, the &

term contributes only to the p, p system. Thus
for the octet of 0 mesons the properties of this
Lagrangian are similar to those of Cronin's mod-
el. To reproduce all the meson masses exactly
we must have

= 10 38'. PCAC is obtained in the form

s 2 = f[Q, I, ]= &2fm
A . Q 2

Q

for +=1,2, , 7.

If we insist that & ~A &~ =f~m~2 p' for i = 1, 2, 3
then f=f /v2.

We are now left with only one parameter. To
obtain any interaction term, we expand the La-
grangian in powers of the fields. This gives us
an interaction Lagrangian" for the strong decay

TJ7l' 1T

-m 'p'Xq+ (1.97-0.0le)(& p)~Xq] (15)
'll'

which implies g = 1.97-0.01&, and therefore

0.03 + 0.01&
1.94-0.02&

'

n= ( f/&3)(2m '+ m 2),
K 7l'

P= -2(W2/v3)(m '-m '),
K 7T

yf =4.5m ' and 5= -0.84.
7t

' (13)

If &=0, the slope of the matrix element is very
small compared with the experimental data indi-
cating thereby that the & term must be present,
although it is not required to fit the masses. Al-
so if &=0, the decay rate is found to be I'& &~+~

The II, field in this model has been renormalized
so that the kinetic energy part of the Lagrangian
1s

Table I. The decay width and the slope in the Dalitz
plot distribution of X- q7t+7t- for different values of
the parameter e.a

g and g are then given by the combination

q = II cos 6)+ 11 sin 6),
8 S

cos 6)-II sin ~,S 8
(14)

—80
—75
—70
—65
—60
-55
—50

45

5.83
4.46
3.30
2.34
1.60
1.07
0.74
0.63

0.218 -40
0.210 -35
0.201 -30
0.192 -25
0.182 -20
0.171 -15
0.160 -10
0.145

0.72
1.03
1 ~ 54
2.27
3.20
4.34
5.70

0.135
0.121
0.107
0.090
0 ~ 073
0.054
0.033

where ils =(1-35)'"II0 is the renormalized sin-
glet field. The mixing angle is found to be 6

I would like to thank Dr. J. Smith for helping me
with the computer programming.
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=S MeV which is too large. In our Lagrangian
as & is the only free parameter left, we obtain
one prediction between the decay rate and the

slope in the Dalitz plot distribution, neither of
which is, however, known with any accuracy.
From the work of London et a1.4 we find that the

slope should be negative. The width of this de-
cay is known" to be less than 4 MeV. %e repre-
sent the prediction of this Lagrangian in Table
I." We see from Table I that to explain the ex-
perimental data presently available, the numer-
ical value of & could be anywhere between -20
and —70. But the values of the slope for differ-
ent values of & come out to be small; this might

really be the case.
It is clear from our development of the phe-

nomenological Lagrangian that it is not possible
to predict both the decay rate and the slope of
y —qm+r in chiral dynamics without any further
ad hoc assumption. " If the decay rate and the
slope were known accurately and if we can as-
sume that the breaking term is of (3*,3) $(3, 3*)
type, then we could construct a unique chiral-dy-
namic Lagrangian for the nonet of pseudoscalar
particles. It may also be said that there is no

compelling reason why the breaking term should
belong to a representation of (3*,3) S (3, 3*).
This problem of uniqueness of a SU(3) 8SU(3)
chiral-dynamic I agrangian and how far we can
go in reproducing the experimental results will
be studied elsewhere. '6

I should like to thank Professor B. N. Lee for
suggesting this investigation to me and for his
advice during the work. I am also grateful to
Dr. %'. A. Bardeen for many helpful and clarify-
ing discussions.

iReferences to works on chiral dynamics can be ob-
tained from any one of the following: S. Weinberg,
Phys. Rev. Letters 18, 188 (1967); J. Schwinger, Phys.
Letters 24B, 473 (1967), and Phys. Rev. 167, 1432
{1968);J. Ress and B. Zumino, Phys. Rev. 163, 1727
(1967); W. A. Bardeen and B. W. Lee, Canadian Sum-
mer Institute Lectures, 1967 {W. A. Benjamin, Inc. ,
New York, to be published); P. Chang and F. Gursey,
Phys. Rev. 164, 1752 (1967); J. Cronin, Phys ~ Rev.
161, 1483 (1967).

A.
V& (X, t) and A& {x,t) are the vector and the axial-

vector currents, respectively. A, is the SU(3) index
and p, the Lorentz index. Q+ and Q~ satisfy the alge-
bra of SU(3), I.Q~, Qpl =if&~Q&. Also, [Q+, Q5Pj
= zf~ ppQ5& and [Q5+, Q5] ] =if~ppQ~.

3This is a natural extension of the work of Bardeen
and Lee, Ref. l.

G. London et al. , Phys. Rev. 143, 1034 {1966).
5When we were finishing our work, we came across

a University of Maryland preprint by P. K. Mitter and

L. J. Swank on this subject. Their model, however is
essentially the same as that of Cronin, Ref. 1.

6We could as well write it as I-y2~ = constta„(I[) a„(~q)
-g'm~ y Xql, where g' is an arbitrary parameter.

YThe method which has been developed by Schwinger
may be called a "minimal" method of obtaining a chi-
ral-invariant Lagrangian. This method for the pseudo-
scalar mesons is to keep the infinitesimal response of
the Lagrangian to -m~2yby while making a most gen-
eral chiral transformation of the fields. This fixes the
interaction Lagrangian completely. But in this model
an anomalous term, like the gauge-invariant anoma-
lous magnetic-moment interaction term in electrody-
namics, could be introduced which is chiral invariant
but nonminimal and arbitrary.

If we consider SU(2) SU(2), where 7[ and 0 belong
to a (2, 2) representation and q and y belong to the (0, 0)
representation, then only one chiral invariant Lagrang-
ian is possible, namely L&t&& =oonst8&Mp8"My )(q

constkI&@2'" (g&) 2~2&2~]. This gives us Pi=0. 5,
which is also consistent with the present experimental
data.

BS. L. Qlashow and S. Weinberg have considered the
case of a SU(3) SSU(3) Lagrangian where the breaking
term transforms as a member of the {3*,3)S (3, 3*)
representation, Phys. Rev. Letters 20, 224 (1968).
But they have not discussed the X decay.

ya o q ~ ~

E~pM~ = c~~6~ p, where e+ is the Levi-Civita
symbol.

~It can be easily proved that the second term in Zq.
(12) is equal to y(6gdetM +H.c.). In expanding this
term we have used an identity that for a 3& 3 matrix
M, det{f+M) = 1+TrM p(TrM-t (TrM-)2j+detM.

12Equation (12) gives the following nn. , ~K, and KK
meson-meson interaction Lagrangian:

—(if2)[{8 Q 3~ 2)2 m 2(Q 3~ 2)2]
p, 1 i

L K=(gf )[(8„Zl V,. )(8 Z4 V

+28 jK(vq )/8"{{~q)K}

—(m +m ){Q q. ){Q y. )],
2 2 3 2 7 2

K 7]' 1 i 4 j

L =($f )[(8 Q y. ) -m (Q y. )]

+(4f )fa (K K )e (K K )
p,

-8 (KK )8 (KK)].
P

13See A. H. Rosenfeld et al. , Rev. Mod Phys. 40,
77 (1968).

~41 would like to thank Dr. J. Smith for helping me
with the computer programing.

~51t has come to the author's attention that a similar
comment has been made by Professor B. Zumino.

~W. A. Bardeen and D. P. Majumdar, to be published.
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