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GENERATION OF PARALLEL DAUGHTERS FROM SUPERCONVERGENCE

H. R. Rubinstein, A. Schwimmer, G. Veneziano, and M. A. Virasoro
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(Received 2 May 1968)

A dynamical model based on superconvergence equations and Regge asymptotics gen-
erates parallel daughter trajectories for positive and negative t. The results are found

by studying different reactions both by means of sum rules and the partial-wave analy-
sis of Regge terms proposed by Schmid.

In recent papers' we have found the rather
surprising result that a few resonances in the di-
rect channel are able to generate in the crossed
channel a rather large piece of meson trajecto-
ries with the expected properties needed to ex-
plain high-energy scattering. In particular the
study of ww- war ' has proved to be a remarkable
laboratory for the p-traj ectory bootstrap. The
method has by now been extended to a large num-
ber of processes like v~-mA, ' and vv -n&,'
where H is a 1+, G = -1 object. By virtue of their
inelastic nature these processes are free from
the statistically cumbersome features associated
with diffraction peaks. In all of them the same
leading trajectories are involved, and the proper-
ties demanded of the trajectories in order to sat-
isfy the sum rules are always strikingly consis-
tent with each other, in spite of the different
space-time structure and masses of states in-
volved.

While extending the sum rule related to the re-
action nm —7I~ by including higher spin intermedi-
ate states for saturation purposes, one finds out
that at the 3 level the equality of the Regge and
resonance side is very satisfactory in a large re-
gion of t. However, when the 5, 7, etc. states
are included, the resonance side becomes small-
er compared with the Regge side. More precise-
ly: One cannot achieve a bootstrap model in
which one trajectory is able to sustain itself.

Several possibilities are open at this stage:
One can assume (a) that the dynamics is very
complicated and that many unknown trajectories
are needed, (b) that the continuum becomes im-
portant in this region, and (c) that the extra
strength needed has a simple and necessary dy-
namical origin. It is our purpose here to study
this last possibility and its connection with Regge
"daughter" traj ectories.

In our previous work we parametrized the arn-
piitude using v=-, (s-u) as asymptotic variable, a
choice that has the proper behavior for the lead-
ing terms. Nevertheless other trajectories must
exist to cancel the unwanted singularities of the
nonleading terms at t =0, and most recent analy-

ses based on the Van Hove' and Bethe-Salpeter
models' seem to indicate a very different behav-
ior for these trajectories. Also, experimentally
it seems that one would predict unobserved parti-
cles if these trajectories were to grow parallel
to the leading ones with a spacing &0= 1, 2, 3 ~ ~ ~ .
However, if the spacing is ~J'=2, 4, ~ ~ ~, there is
no evidence against parallel daughters and in
fact some particles could easily be accomodated
on these traj ectories Since our reaction only
couples to trajectories spaced (at t = 0) by two
units of 4, we may hope that the wm- mw system
might be coupled to an angular momentum set of
trajectories as the one depicted in Fig. 1.

If this form of bootstrap is viable, we have to
prove that the Regge trajectories contain all
these resonances and that reciprocally these res-
onances can generate the trajectories in the
sense of the sum rules. We start by looking into
the content of the Regge terms. For this purpose
we use the recently proposed technique of Schmid'
of performing a partial-wave analysis of the Reg-
ge amplitude. We consider first the reaction mw- m~ for which we have a wealth of information
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FIG. 1. Trajectory family with 6=+1 and I= l.
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T =e P P P e A(s, t, u, (1)
7l'F %co )L(. vpa $ /J. 2 v 3p 0'

where P; are the pion momenta and e~ is the po-
larization vector of the w.

At high v and fixed t we parametrize A in the
Regge form

)
(v/v, ) $(o').

(fixed t)

(2)

From our analysis of the sum rules we have
found c = constant, n(t) =

2 + t, and v, = 1/2o. '

=0.5 BeV . $(e) is the signature factor [1
-iw n(t) ]/sins n(t).

derived from the sum rules. '~ The invariant am-
plitude is defined as

The partial-wave projection is given

Z [Z(v+1)]'"
(s) 8(2s)'~~ sn s(u

& J+,'d cose A (s, t, u)s Regge

x[a -f ]

= its-( + m )*][s-( -m )*]]'".
ab a b a (4)

These integrals are the ones that generate the
Argand-type diagram' of our inelastic process.

We find the striking results of Fig. 2(a). The

where ARegge is given by Eq. (2) after symme-
trization between t and u. This t, u symmetry
makes the forbidden partial waves vanish auto-
matically. Also,
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FIG. 2. (a) Argand plots for l=3 and i=5, reaction 7tx-7t(d; (b) same plots for /=3 and 5, for ~~-~H; and
(c) same as (b) for the helicity amplitude Fp= y~. Numbers along curves are masses in BeV; ordinates and abscis-
sas are Im and Re parts of the amplitudes, respectively.
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amplitude turns around more than once generating presumably more than one resonance. Most sur-
prising, the masses of these particles are such that they lie on parallel "daughter" trajectories with
&J=2 spacing. The couplings that can be read from the plots are in qualitative agreement with the in-
put and, most rewarding, the background is very small, a fact that provides further support for the
idea of saturation by means of sharp resonances in the meson case. '

However the most striking property of the resonance, the pole, is lacking in this representation of
the amplitude. To get further indication that one is not obtaining some spurious reflections of varia-
tions of the amplitude in the t channel, we studied another similar reaction that is controlled by the
same trajectory with the same selection rules: nn —mH. In this reaction there are two helicity ampli-
tudes, and the space-time structure, as well as the projection operators involved, is completely dif-
ferent compared with the former case. In fact now, because of parity,

T =i(P +P ) e A (s, t, u)+i(P -P ) e B (s, t, u).nn-mH 2 3p p 1 '' 2 3mu. 1

The partial waves are given by the coefficients of the Wigner functions so that we obtain

~(a+I) '" +~
(s) = S J, dcos8 (A +B) [P -P ],s 7r7r s 1 1 Regge J-1 J+1 '

1

(s) = S f dcos8 (3A -B ) P
A=0 4m rH -~ s 1 1 Regge J'H-

S
'rr'rr 2 2 r+x

+ (s+m -m )f dcos8 (A +B ) cos8 P (cos8 ) .s H rr s 1 1 Regge s J s

+x++x and K4x Bx are amplitudes with definite u
—t crossing. Their high-s parametrization is

A, +B~- ](o)[p (v/v~) + p '(v/v~) ]
Ai o.(t) -1 B, o.(t)

(3)+(u-t),

3A, -B,—((n)[3P '(viv, )
~(t) -1

—p '(v/v, ) ]-(u —t).B, o(t)
(9)

We still choose v, =l/2n' and P i and P i con-
stant, and let the ratio p &/p & vary consistent-
ly with the procedure of Ref. 3. The Argand plot
for P ~/P ~ = -6 (value obtained in Ref. 3) is giv-
en in Figs. 2(b) and 2(c).

It is remarkable that these very different for-
mulas lead to the same plots, concerning position
of particles which, as true resonances demand,
do appear in all helicity states. We believe these
two independent and complementary tests are
quite convincing on the point that the Regge lead-
ing term contains all this structure.

Since the mathematics of this exercise is rath-
er obscured by the cumbersome integrations, we
would like to present an example of what is in-
volved. Consider the wm- m~ case. Instead of an
angular-momentum projection of A(s, t, u), we
develop it in powers of vt„=(t-u) (a Khuri expan-

sion):

A =Q a(s, n)v
n (10)

From the exPression of ARegge we easily obtain
(Z = m~'+3m~')

�

2m' Z-s +o 0 -1
Ima(s, 0) =

2v,

1
I'[-,'o. '(Z-s)+ o.(0)]'

where the maxima and minima of Ima(s, 0) are
clearly related to the behavior of I' '[-,'o. '(Z-s)
+ o(0)]. The zeros of this function and the linear
argument in s are responsible for the appearance
of parallel daughters. Also, a change in the gen-
erating trajectory that is displaced by two units
reinforces the same extreme points. Hence by
feeding back the new trajectories the results are
reinforced and the picture is not distorted. This
was verified in all other cases as well.

We now rephrase the problem in the sum-rules
language. This has three main advantages:
(1) The resonances are inserted as real poles of
the scattering amplitudes; there is no problem
such as that of discovering the exact meaning of
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the pictures in the Argand plot. (2) We obtain a set of algebraic equations and we can look for its
mathematical solutions. (3) We can work at fixed t and determine self-consistently the t dependent of
the residue function.

On the other hand, the method of Ref. 7 is heuristically more powerful and is able to check other de-
tails like the importance of continuum.

Consider nm- m~. We want to see whether the insertion of resonances is enough to balance the sum
rules and, in turn, whether the conspiracy conditions imposed by analyticity at t =0 (for unequal-mass
scattering) do yield some information about these trajectories.

The general form of the sum rule is2

) .
(

.), , P '(co. s8 )+r) .
(

.), , P . '(cos8 )+ ~ ~ ~

-1 2 o.-1=nI' (n+2)v (v/v ) + ~ ~ ~ .
1

(12)

In Eq. (12) vf=4(2m +t-Z), r=c D/c, where we
have used Eq. (2) and a similar one (c-cLi, n
—nD) for the first daughter contribution. Also
P2;+ I'(cos8s) is proportional to P2;+ I'(cos8s)
and has asymptotic behavior

We have assumed linear trajectories in our re-
gion of t, The i summation is that of the contri-
bution of the resonances on the parent trajectory,
that over j is of the first daughter, and so on.
On the right-hand side of Eq. (12) we have writ-
ten the leading term which will be followed by
the nonleading ones (which are regular at f = 0 af-
ter the singularities have been canceled between
"parent and daughter" trajectories).

If we restrict ourselves, as an example, to
saturation with p+ R (3, 1680) and we neglect
other terms in the right-hand side of (12) (we can
show they are unimportant), the sum rule reads

V Q Q'

=
—,
' n(n+ 2)(n+ 3)C (n), (13)

where C[n(t)]= 2[-,'(n+6)]n+1[I'(n+4)] 1 is a
function that is equal to 1 in all the region of in-
terest to a high degree of accuracy. '

The conditions implied by Eq. (13) to be satis-
fied as an algebraic equation demand that eD'
= n' and also fix p&(mD2)/il(m 2) = -1/40 [re-

P
member that nD(0) = n(0) -2].

The t =0 analyticity conditions can also be sat-
isfied, and consequently (assuming a smooth t
dependence), the term next to the leading term
of ARegge can be determined.

Conclusions. —The results presented here are
the following:

(i) We have lent support to the idea that the
Regge term when partial-wave analyzed is a
good representation of the amplitude as suggest-
ed by Schmid. ' Most remarkable, in the reac-
tions studied this technique has produced a new
family of particles that can be naturally identi-
fied with daughters that move parallel to the
leading one for a large region of t. Their pres-
ence has been demonstrated in very different re-
actions and, most interesting, they show up in
all helicity amplitudes as required by true reso-
nances. Ratios of couplings are in qualitative
agreement with experiment and our sum rules.
The possibility of saturation of sum rules with
resonances only' is strengthened because the
analysis of the Regge term shows a very small
background in the imaginary part of the ampli-
tude.

(ii) From the point of view of the sum rules,
the appearance of these trajectories, necessitat-
ed by analyticity, provides contributions to the
sum rules that are needed to compensate the
Regge side. 2 More precisely, since a world with
a single self-sustained trajectory seems impos-
sible, this model gives a very attractive dynami-
cal alternative. As we have shown, the satura-
tion of the sum rules demands parallel "daughter"
trajectories.

Parallel daughters of the p trajectory, spaced
by two units of angular momentum, are also ap-
pealing because they might account as well for
some of the new particles discovered in the R
region. '

We acknowledge correspondence with M. Ade-
mollo and discussions with D. Horn, U. Maor,
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and M. Kugler.
Note added in proof. —The symmetrization of

the amplitude in formula (8) is done in order to
preserve the properties of the amplitude and

avoid spurious even partial waves. This param-
etrization contributes an oscillating term in the
backward peak if this form of the amplitude is
valid at all energies. However, it is also possi-
ble that our symmetrization procedure does not

hold for very large s. We thank M. Kugler for
discussions on this point.
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New dispersion sum rules for cross sections, coupling constants, and low-energy
scattering data are derived by considering modified forward-scattering amplitudes. A

set of these sum rules, which involve highly convergent integrals, may be useful for
testing low-energy phase-shift analyses of 7t.7t and KV scattering.

Modifications of the ordinary forward-scatter-
ing dispersion relations have been applied by
many workers in the past several years. Most
of these modifications have been essentially
based on the Igi procedure for deriving finite-en-
ergy sum rules' and/or the Gilbert-Liu-Okubo
technique of working with the ordinary ampli-
tude multiplied by a factor e'~r /q@ (where p is
a variable real parameter and p is the laboratory
momentum). Modified dispersion relations based
on the phase representation'~' have also been
found useful in correlating high- and low-energy
scattering parameters.

In two previous papers, '~ the present authors
have made use of the knowledge of the zeros of
the forward vN and KN crossing-even amplitudes
to derive and apply Gilbert-type dispersion sum
rules for the threshold- and infinite-energy
cross sections. After completing this work, it
was realized that with a slight generalization of
our procedure, we could derive a very interest-
ing set of new sum rules of which the ones de-
rived previously from a knowledge of the zeros
of the amplitudes are special cases.

In order to illustrate our procedure, we will
consider the crossing-even nN and vn amplitudes,
but it should be evident how one should proceed
in the case of other amplitudes with different

lmT((u) qa ((u),=

q (~2 ~2)1/2

(1)

(2)

where p. is the pion mass, co is the laboratory
energy, and o (~) is the average of the w+p and
m p total cross sections. T(&o) is assumed to
satisfy the once-subtracted dispersion relation

T(~) =T(g)+

where

~,=g /2M,

f '/4v = 0.081,

and M is the nucleon mass.
Now consider the modified amplitude

(4)

(5)

( )
T((u) T(p) iwP-

2 2 2 2P(~ +a )(~ -p )
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crossing properties and more complicated pole
and cut structures.

Let T(~) I=,'(T~+p+T„--p)j be the m-N forward
crossing-even amplitude normalized so that the
optical theorem has the form


