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The pionic three-body potential in nuclear matter is shown to be comparable with

the two-body potential.

There have been many attempts to calculate
three-body forces in nuclei from meson theory. '
It was early realized that the long-range part of
the three-body force comes from Feynman dia-
grams in which a virtual pion emitted by one nu-
cleon is scattered by the second and then ab-
sorbed by the third (Fig. 1). Of course, the part
of the nucleon pole term in the m-N scattering
amplitude which arises from a single positive-
energy nucleon intermediate state [Fig. 1(a)] is
already included in the iterated two-body poten-
tial. Only the two-nucleon, one-antinucleon
state contribution from the nucleon pole term
[Fig. 1(b)] applies to three-body forces. Histor-
ically, this was one of the first three-body poten-
tials calculated and found to be large. However,
the corresponding approximation to m-N scatter-
ing gives a large S-wave scattering length con-
trary to experiment. Therefore, the pole term
was scaled down by hand to correspond to the
correct S-wave scattering length, and then the
three-body force from Fig. 1(b) was estimated.
Subsequently, the contributions of mN and mm res-
onances [Figs. 1(c), 1(d), 1(e), etc. ] were added.

Recently, Brown, Green, and Gerace' (BGG)
have treated the sum of all these contributions
to the three-body force in a unified and consis-
tent way, for cases where the momentum trans-
fers of the nucleons are small. They base their
analysis on the Adler partially conserved axial-
vector current consistency condition, ' which re-
quires that the m-N scattering amplitude vanish
when one or both of the pion four-momenta are
zero. This implies that the diagrams in Fig. 1
cancel each other, when the virtual pions are
soft. BGG then point out that the two-body force
contribution in Fig. 1(a) vanishes by itself in the
soft-pion limit, so that the sum of the remain-
ing terms in Fig. 1 which contribute to the three-
body potential also vanishes in this limit. They
further show that this three-body potential ex-
trapolates slowly in q' (the square of the virtual
pion mass) and q, (the pion lab energy) for q'jm'
«1 and q,/m «1, where m is the nucleon mass.
Finally, if Fig. 1 is considered as a Goldstone
diagram for the energy of nuclear matter, or of
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FIG. 1. Diagrams related to the long-range (pionic)
three-body force. All diagrams except (a) contribute
to this force.

the triton, then the momenta of the nucleons 1,
2, and 3 are small, implying q'= p' and qp
where p, is the physical pion mass. Thus, the
three-body potential contribution to the energy,
arising from these diagrams, would be small.
From this, BGG proceed to conclude that the pi-
onic three-body forces in nuclear matter and nu-
clei are small.

Such a general conclusion is not justified when
drawn from the diagram in Fig. 1, which is only
to first order in the three-body potential. Indeed,
BGG have shown in a convincing fashion that the
small-momentum-transfer components of their
three-body potential is small. However, any
property of a nuclear system, such as the ener-
gy or the wave function, will involve in general
terms of all orders in both the three- and the
two-body potentials. Even if the three-body po-
tential were to be treated in first order, it would
still appear in diagrams in conjunction with ar-
bitrary orders of the strong two-body reaction
matrix g. Now, it is well known that because of
the hard core in the two-nucleon force, the g ma-
trices excite nucleons strongly to states typically
of momenta about 4 F '. Consider, for example,
the Goldstone diagrams in Fig. 2, which must
necessarily occur. The intermediate-state mo-
menta k„k„k3,and k4 are typically about 4
F or about 5p, as a result of the action of the
two-body g matrices on the initial or final states
1, 2, and 3. The corresponding virtual pions
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(b)

FIG. 2. Two Goldstone diagrams, involving the two-

body reaction matrices g and the three-body potential
of Fig. 1. The wiggly lines are the g matrices.

are highly spacelike, with q'- -20'' to -25 ''.
In general, therefore, the three-body potential

of Fig. 1 would occur not between nucleons of
small momenta, but between nucleons which typ-
ically differ in momentum by about 5p. . Its ef-
fect will depend on its large-momentum-transfer
components, i.e., on m -+ scattering with hard
spacelike pions. The small result of BGG, aris-
ing from delicate cancellations in the r-N ampli-
tudes when q =0, cannot be expected to hold when

]

the pions are so hard.
To estimate the magnitude of the three-body

potential, one clearly has to extrapolate the ~-Ã
scattering amplitude to q'- -2010,'. This is a fair-
ly bold extrapolation and there is no unambigu-
ous way of doing it. However, we present below
two reasonable models for the extrapolation,
both of which indicate that the three-body forces
in nuclei are about as strong as the two-body
forces. We will extrapolate in both pion masses,
keeping them equal, and also restrict ourselves
for simplicity to forward rN scattering. This is
what occurs in Fig. 2, and should give us a rea-
sonable estimate. We will also deal with the am-
plitude which is symmetric in the isospin vari-
ables of the two pions. Only this contributes in

nuclear matter. Similar considerations are ac-
tually also valid for the antisymmetric amplitude.

The invariant isosymmetric m-N scattering am-
plitude T consists of a nucleon pole term and the
continuum. We have to remove from the pole
term TB the part T, which corresponds to a
positive-energy nucleon intermediate state [Fig.
1(a)], since this is contained in the iterated two-
body potential contribution. We calculate T,B by
usual second-order perturbation theory with a
vertex H, =igK(q')gy, gq/, where K(q') is the wNN

form factor and g'/4 v14.4. Straightforward al-
gebra leads to a contribution T3B from the pole
term [corresponding to Fig. 1(b)] relevant to the
three-body force, given by
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This can be directly extrapolated in q and p, .
To get the continuum contribution, we use two

models. The first is the one introduced by Ad-
ler and used by BGG in their work. Forward
dispersion relations are written for A and 8 am-
plitudes in the usual variable, where T= -A
+i'. The absorptive parts in the dispersion re-
lation are assumed to be dominated by a narrow
(3, 3) resonance, which is extrapolated in the
square of the pion mass q' by

Chew -Goldber ger -Low -Nambu partial-wave am-
plitude and is given in the narrow-resonance lim-
it by

Imf»(s, i/, 2) = m~5(v"s-M~).

M* is the N* resonance mass, and the coupling
constant & is adjusted to satisfy the Adler consis-
tency condition, i.e., T(qo=0, q'=0)=0. Upon in-
serting Eq. (2) into the dispersion relation, one
obtains a unique extrapolation of the continuum
contribution, as a function of q, and q'.

Another model for extrapolating the continuum
contribution under X* dominance is simply to
evaluate Feynman diagrams corresponding to N*
poles in the s and u channels. The mNN* vertex

This method of extrapolating just the threshold
factors is found to be satisfactory by Adler in his
work on electroproduction, ' for the photon mass
squared up to -20'.'. In Eq. (2), f»(s, p') is the

Imf„(s,q') =K(q') '. . Imf,.(s, u') (2).
&0 I" c m.
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with strong two-body potentials' teaches us that
these forces should be treated to all orders in

perturbation in closed form —a very complicated
task when both two- and three-body forces act
strongly. We only wish to point out that unless
there are some very fortunate cancellations be-
tween different cluster diagrams, the effect of
long-range three-body forces in nuclear system
will be comparable with that of the usual two-
body forces.

Finally, unlike electromagnetic form factors,
R~~v(q') cannot be directly measured experimen-
tally for large q' by N-N scattering. If one uses
a specific theory, such as the pion-pole domi-
nance of the divergence of the axial-vector cur-
rent, then one can write

FIG. s. Curve 1 gives T3{q )/(K (q lg /m) for zero pi-
on laboratory energy. The continuum contribution for
this curve is calcu'. ated by the Adler extrapolation
method. Curve 2 gives the same quantity, but with the
continuum now calculated by the N*-pole Feynman dia-
gram. Curve 3 gives T2B rn/tK (q )g /m]. Compari-
son of curves 1 and 2 with curve 3 gives an estimate
of the strength of the three-body force as compared
with the twice iterated two-body force of Fig. 1(a).

is taken to be K(q')(A/mg~(p I+ql)u(pl)(pl
-ql)i, where the u& is the Rarita-Schwinger
spinor for the +*.6 Evaluation of the Feynman
diagram is straightforward and yields a result
as a function of the q', and the pion energy qo.
The coupling constant ~ is once again adjusted
to give the Adler consistency condition at q = 0.

We thus have two models for calculating T(con-
tinuum). The three-body force in clearly related
to T, = TsH+ T(continuum). The results, as a
function of q', for q, = 0 are shown in Fig. 3. We
can see that T,(q') depends for its sign and pre-
cise value on the actual method of extrapolation.
However, it is of the order of K'(q')g'/m and in
genera, l la, rge and compara, ble with T2
Thus, when one considers the large Fourier corn-
ponents of the three-body potential by studying
r-N amplitudes for q'= -10' to -25'', one con-
cludes that these are in general comparable with
the corresponding components of two-body forc-
es, as distinct from the conclusion of BGG. Note
that we do not attempt to estimate the effect of
these three-body forces on the binding energy or
wave functions of nuclear systems. Experience

™ImK q"
&(q') = I+ (q'- p')

g 2 q -q

But experiments indicate no strong 3~ resonanc-
es with the quantum numbers of the pion to satu-
rate the above dispersion integral. An arbitrary
choice of a resonance between 3 p, and 20', gives
widely different values for &(-20&'). Thus,
there is no unambiguous way of estimating the
actual strength of the three-body forces in the
above models. However, this does not alter our
conclusion that the three-body potentials will be
comparable with twice iterated two-body poten-
tial terms, since the same factor K~(q') occurs
in both cases.
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The values of A, and A adjusted to obey Adler's con-

2 1
sistency condition reproduce, respectively, 3 and 2

the measured N* width in the static limit. Thus, the
crude narrow N* dominance is a reasonable approxima-
tion.
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The magnetic hyperfine splitting for rotational levels of deformed, even-even nuclei
in muonic atoms is shown to result in an asymmetric y-ray doublet, whose center of
gravity is in general shifted towards lower energies. This pseudoisomer shift is of the
order of magnitude of the reported "isomer" shifts.

The cascade of the muon from the high-lying
muonic orbits to the muonic ground state of de-
formed nuclei is often accompanied by the excita-
tion of nuclear rotational levels. '~ As the life-
time of the muon in the 1s state is long compared
with the lifetime of the rotational levels, the de-
exciting nuclear y ray is emitted in the presence
of the 1s muon with the result that the transition
energies differ from the respective energies in
the absence of the "spectator muon. "3~4 Such y
rays have been observed for transitions in a num-
ber of deformed nuclei from '"Nd to "'%.'~ The
observed energy shifts of the radiation, assumed
to be an unsplit line, have been interpreted as
arising entirely from the radius difference be-
tween the ground and excited states of the host
nucleus, i.e. , as isomer shifts. In this note we
point out that the nuclear transition, in the pres-
ence of the muon, is in general an asymmetric
doublet whose center of gravity is shifted from
that of the unsplit line even in the absence of an
isomer shift. The shift of the center of gravity
of the decay spectra arises from two effects.
First, there is a nonstatistical feeding of the nu-
cle
M1
tion
feet
the
of
cle
the

The Hamiltonian of the muonic atom,

H=H +[ T(p) +V(r )]+(H +H )
C M

N

consists of three parts: (i) the nuclear Hamilton-
ian HII in the absence of the muon [eigenstates
1% a(1, ~ ~ ~, A))]; (ii) the muonic Hamiltonian,

[T(p) + V(r&)], with the average Coulomb poten-
tial V(r&) due to the charge distribution of the
nuclear ground state (eigenstates Inlj)); and

(iii) the residual Coulomb force, KC = -e 2Qp I
P'

-rp I 1-V(r&), together with the magnetic inter-
action HM between the muon and the nucleus.
The last part, H +HM, is usually considered to
be small and can be treated in perturbation theo-
ry, at least for the muon in the 1s orbit.

The isomer shift between two nuclear states
+~ and 4'p is defined as the energy difference

-(4', 1s, IH 14, 1s, ), (2)
C

ar magnetic hyperfine levels, and second, the where 1s», denotes the spectator muon. The en-
intradoublet transition enhances the popula- ergy, EEisome, depends essentially on the ra-
of the lower hyperfine level. The latter ef- dius difference between the two nuclear states
generally dominates, resulting in a shift of and is a quantity which contains valuable informa-

center of gravity which is of the same order tion about the nucleus. Each nuclear state 4'z
magnitude as the observed energy shifts. Nu- with spin 1z 10 also exhibits a hyperfine splitting
ar polarization phenomena are considered in which originates from the interaction of the nu-
second half of this Letter. cleus with the magnetic moment of the 1s muon.

The splitting is given in first order by

AE = (4', 1s„F= I + ~ I H 14, 1s„F= I + ~)

-(4, ls, ; F =I -2 IH 14, 1s, ; F =I -p),
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