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A simple approach to lattice dynamics provides a treatment of noninstantaneous (dis-
persive) anharmonicities in highly anharmonic crystals with singular (hard-core) inter-
particle potentials. The theory may be used to study the balance between single-particle
and collective motions (phonons) in solid helium.

A partial summation of a series of anharmonicities is necessary in the lattice dynamics of highly
anharmonic crystals. This has been achieved in the self-consistent phonon theory, ' which can more
readily be adapted to numerical computation than a second approach which emphasizes the single-par-
ticle aspect of the crystal. '&' However, the theory remains inapplicable to quantum crystals, such as
solid helium, due to the restriction to nonsingular interparticle potentials and the omission of nonin-
stantaneous (dispersive) anharmonicities. It has been suggested' that an adequate generalization
would be to sum proper ladder diagrams and simultaneously to include phonon lifetime effects due to
dispersive anharmonicities. However, the method of accomplishing such refinements from the self-
consistent phonon theory has been considered "to be not at all obvious. " Therefore, present general-
izations are largely approximate. Some neglect dispersive anharmonicities completely, and are also
restricted to zero temperature. All of them treat instantaneous anharmonicities approximately and

replace the singular interparticle potential by a nonsingular effective one, essentially in the spirit of
a cluster-variational approach. '

In contrast, we present in this Letter a simple approach to the lattice dynamics of quantum crys-
tals, which treats instantaneous anharmonicities rigorously, is valid for singluar interparticle poten-
tials at all temperatures, and includes dispersive anharmonicities. Exact formulas for sound veloci-
ties and phonon spectra are given. Because of their structure they can be used to determine disper-
sive anharmonic contributions unambiguously. The corresponding spectral width function can be stud-
ied by employing a moment approximation. This is of interest for examining the balance between
single-particle and collective motions in solid helium, especially since present single-particle and
phonon-excitation approaches to the lattice dynamics are in apparent contradiction.

We begin with the usual simple but rigorous way of studying the excitation energies of a lattice by
considering the response of the crystal to a suitable external probe. The poles of the appropriate re-
sponse function —or the zeros of its inverse —then determine the relation between frequency ( and
wave vector q of the associated modes. We have been able to obtain the following exact spectral rep-
resentation for the inverse of the displacement response function:

where M denotes the mass of a single lattice particle, and k(=1, 2, 3, ) the Cartesian indices. The
spectral width function I kk, (q, cu) has the same symmetry properties as the spectral function Tkkl(q,
~), which is the Fourier transform of the commutator of the displacement operators. '~' We have used
sum-rule techniques to calculate the frequency-independent "dynamical matrix" 4kkl(q) exactly. For
a two-particle interatomic potential v(r) we obtain

1 3 ~Q ~Q
(q) =N P [I-exp(-iq ~ R )]Jd rv v v(r)(5(r-x +x )) (R,—= R -R ),kk' k k'
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where the lattice vector of the oth particle R is given by its mean equilibrium position (xo'). The
singular behavior of a Lennard-Jones potential is compensated, since

I

g(r) =(MN) P (5(r-x +x ))
Cl g A

(2)
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represents the pair distribution function of the crystal. Zeros of the real part of eigenvalues of the
three-by-three matrix y&&, (q, ~) define physical phonons having frequencies ~s(q) which satisfy

d~'r (q, ( ')
M~ '(q)-4 (q)-P, -=0. (3)s s 2m ~ (q)-u)'

S

The quantities of (3) are related to those of (1) by introducing left and right polarization vectors
cps(q, z) and ey s(q, z), which formally diagonalize gyp~ (q, z). An exact expression for the long-
wavelength isothermal sound velocity vs follows from (1) for z =0, due to the compressibility sum
rule:

1. (q, )[S= lim (INES)
'

J
4 (q)- l~ des

q-0
(4)

Becasue of its symmetry properties, I's(q, ~)/e ~ 0.
All of the foregoing results are exact. We now indicate how they can be used to examine current

approximations and remove existing deficiencies in lattice dynamics. (I) The exact instantaneous dis-
placement response of the crystal is obtained by neglecting the dispersive term fd~'I&I', (q, ~, ')/2w(z
-&u') in (1). The phonon frequencies &us(q) then obey the eigenvalue equation

3
(u (q)e (q) = M P rp ,(q)e , (q).

k'=1
(5)

Equation (5), together with the definition of &pi, f (q) in (2), shows that the phonon frequencies u. s(q) in
the instantaneous approach are determined for a given two-particle interaction v(r) by the static two-
particle correlation function or the pair distribution function g(r) cc (6(r-x +x )). The fluctuation-
dissipation theorem in connection with the third frequency moment of the density-density spectral
function could be used to obtain a complicated nonlinear integral equation for g(r). Therefore, excita-
tions of the displacement response are related to excitations of the density response, and this integral
equation, coupled to Eq. (5), replaces the self-consistent condition of earlier approximate schemes.
The self-consistent harmonic as well as the well-known harmonic approach are approximations to (5).
They may readily be obtained from the corresponding approximations to the static two-particle corre-

I
lation function or to (5(r-x~+x~ )), respectively. ' However, the Monte Carlo method represents
another and numerically easier way to compute not only (5(r-x++x~ )) but also higher static particle
correlation functions rigorously. Futhermore, it avoids the usual cluster variational expansion, the
limitation of which has been demonstrated. ' Such calculations for solid helium at zero temperatures
are now in progress. (II) Rigorous calculations of (5) can be used for two basic purposes: (a) In the
long-wavelength limit we get the instantaneous contributions to the exact formula (4) for sound veloci-
ties. A comparison with measured sound velocities therefore provides an unambiguous determination
of dispersive contributions, since they enter additively into (4). (b) Frequencies &s(q) of (5) deter-
mine the contribution of the instantaneous displacement response to the one-phonon term of the neu-
tron scattering function":

S (q, ru) =(1-e ) [d(q)J P q &,(q, ~)q
„

(1) - P~ -1-
k, k'

where [d(q) J' is the Debye-Wailer factor and

T,(q, ~) = 2~5 e (-q)e, (q)[2M~ (q) ] {5[~-~ (q) ]-6[&v + u! (q)]J (6)

is the spectral function in the instantaneous approach. Therefore, a comparison of S~ '(q, w) with in-
elastic neutron-scattering experiments in single-crystal helium' gives subtractively an estimate of
dispersive anharmonic contributions to phonon frequencies. (III) Frequency moments of T(q, r ) and

&(q, ~) can be connected to a high-z expansion of (1). Sum-rule techniques can again be used to ob-
tain higher frequency moments of 7(q, & ) in terms of higher static particle-correlation functions, com-

436



VOLUME 21, NUMBER 7 PHYSICAL RKVIKW LKTTKRS 12 AUGUST 1968

puted by the Monte Carlo method. The coupling of the particle motion to the phonon modes then is re-
flected in the related moments of the spectral width function I'(q, c:), which determine, e.g., shift and

lifetime of phonon frequencies from (5) due to dispersive anharmonicities. Rapidly varying parts may,
of course, appear in I'(q, &)." In particular, at finite temperatures they are responsible for the dif-
ference between isothermal and adiabatic sound propagation and for the possible appearance of second

sound in solid helium. As in each of the previous theories of solid helium, '&' we shall not, in this I,et-
ter, consider such resonant terms in I'(g, &u) on the grounds of simplicity. Details of the theoretical
analysis of dispersive anharmonicities, including a discussion of the nonregular parts in I'(q, &), will

be published subsequently, together with extensive results of the Monte Carlo calculations.
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