B1490 (1965); L. B. Okun', Yadern. Fiz. <u>1</u>, 938 (1965) [translation: Soviet J. Nucl. Phys. <u>1</u>, 670 (1965)]; J. Prentki and M. Veltman, Phys. Letters <u>15</u>, 88 (1965).

⁷This cut is symmetric about the experimentally measured center of the peak.

⁸T. D. Lee, Phys. Rev. 139, B1415 (1965).

⁹C. Baltay, P. Franzini, and J. Kim, private communication.

¹⁰The experimental detection efficiency of our appara-

tus for the decay $\eta \to \pi^+ \pi^- \pi^0$ was calculated using Monte Carlo techniques. As a function of the Dalitz coordinate, y, it was found to fit the approximate form $\epsilon(y)$ $\approx 2(1-y)$ %. Note that the asymmetry as a function of x and y, A(x,y), is <u>not</u> dependent on detection efficiency. Hence, the determination of b and c is independent of Monte Carlo calculation.

 11 C. Bemporad <u>et al.</u>, Phys. Letters <u>25B</u>, 380 (1967). 12 We would like to thank Professor C. N. Yang for pointing out this possibility to us.

ANALYTIC STRUCTURE OF ENERGY LEVELS IN A FIELD-THEORY MODEL

Carl M. Bender*

Department of Physics, Harvard University, Cambridge, Massachusetts

and

Tai Tsun Wu

Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts (Received 17 May 1968)

We consider a model of $\lambda \varphi^4$ field theory in which perturbation theory diverges and analytically continue the energy levels into the complex λ plane. Using WKB technique, we determine that the energy levels have an infinite sequence of branch points (where level crossing occurs) with a limit point $a\lambda = 0$. Thus the origin is not an isolated singularity. The resolvent $(z-H)^{-1}$ has an infinite sequence of poles with a limit point at $\lambda = 0$.

We investigate here a simple but nontrivial model of φ^4 field theory where all of the following questions can be readily answered:

(A) Is the perturbation series for the groundstate energy, which is a power series in the coupling constant λ , convergent for any $\lambda \neq 0$?

(B) If not, does the ground-state energy, considered as a function of complex λ or more generally as a function of some power α of λ , have an isolated singularity at $\lambda = 0$?

(C) Is the resolvent $(z-H)^{-1}$, considered as a function of λ^{α} for fixed z, analytic at $\lambda = 0$? If not, is the point $\lambda = 0$ an isolated singularity?

The answer to all these questions is <u>no</u>. More precisely:

(A) The ground-state energy, which is originally defined only for positive values of λ , can be analytically continued into the complex λ plane. This analytic continuation of the ground-state energy has an infinite number of branch points, which have a limit point at the origin $\lambda = 0$. Moreover, at each branch point level crossing occurs.

(B) If α is chosen to be $\frac{1}{3}$, then the resolvent has no branch cut. However, for all z, $(z-H)^{-1}$ has an infinite number of poles, which have a limit point at the origin.

The model which we consider in this paper is a φ^4 field theory of no space dimensions. The Ham-

iltonian is

$$H = \frac{1}{2}\dot{\varphi}^2 + \frac{1}{2}m^2\varphi^2 + \lambda\varphi^4.$$
⁽¹⁾

In the interaction picture, the Fock representation for the field operator φ is

$$\varphi = (2m)^{-\frac{1}{2}} (ae^{-imt} + a^{\dagger}e^{imt}),$$

$$\varphi = (\frac{1}{2}m)^{\frac{1}{2}} (-iae^{-imt} + ia^{\dagger}e^{imt}),$$

$$[a, a^{\dagger}] = 1.$$

The perturbation series for the ground-state energy is the sum of all connected Feynman diagrams having no external legs. The Feynman rules are

$$(E^2 - m^2 + i\epsilon)^{-1}$$
 for a propagator,
24 λ for a vertex,
 $i(2\pi)^{-1} \int_{-\infty}^{+\infty} dE$ for every loop integration

The necessary symmetry numbers are the same as in the (3+1)-dimensional theory.²

For every diagram containing n vertices, there are 2n internal lines and n+1 loop integrations. All diagrams with n vertices add in phase and the perturbation series is finite in every order.

The number of diagrams having n vertices is

at least $(n-1)!3^{-n}$ and at most $(2n-1)!!8^n$. Using Feynman integral representations, uniform upper and lower bounds may be placed on all diagrams having *n* vertices. Let the formal perturbation series for the ground-state energy be written as

$$E(\lambda) = \frac{1}{2}m - \sum_{n=1}^{\infty} \left(\frac{-\lambda}{m^3}\right)^n m E_n.$$

Then E_n are positive numbers bounded below and above by

$$A\Gamma(n)B^n < E_n < C\Gamma(n)D^n$$
,

where A, B, C, and D are positive constants.³ This implies that the above series is divergent for $\lambda \neq 0$. We thus conclude that the ground-state energy is not an analytic function of λ^{α} about λ = 0 for any α .

The first 75 terms in the perturbation series have been calculated by computer to four-place accuracy. The result is

$$E_n \sim (1.171)(2n-1)!! \left(\frac{3}{2}\right)^{n-1}$$

for large n.

To get more detailed information on the analytic structure of the ground-state energy, we use the coordinate representation for the Hamiltonian [Eq. (1)]:

$$\varphi = 2^{-1/2}x, \quad \dot{\varphi} = -i2^{-1/2}d/dx,$$

and we let m = 1 without loss of generality. Thus the wave function $\Psi(x)$ satisfies

$$(-d^{2}/dx^{2} + \frac{1}{4}x^{2} + \frac{1}{4}\lambda x^{4})\Psi(x) = E(\lambda)\Psi(x)$$
(2)

together with the boundary conditions

$$\lim_{x \to \pm \infty} \Psi(x) = 0.$$
(3)

Equations (2) and (3) imply that $\Psi(x)$ behaves roughly as $\exp(-\lambda^{-1/2}|x|^3)$ for large |x| along the real axis. Thus Eq. (3) holds not only on the real axis but also for x in the sector $|\arg x| < \frac{1}{6}\pi$.

Until now λ has been positive. The coordinate representation allows us to continue $E(\lambda)$ into the complex plane. For complex λ , $E(\lambda)$ is defined by Eq. (2) with the boundary condition

$$\lim_{|x| \to \infty} \Psi(x) = 0$$

provided that

$$|\arg(\pm x) + \frac{1}{6}(\arg\lambda)| < \frac{1}{6}\pi.$$
 (3a)

This analytic continuation is possible provided that $\int \Psi(x)^2 dx$ does not vanish. In fact, with suitable normalization

$$\int \Psi(x)^2 dx = 0 \tag{4}$$

is a necessary and sufficient condition for the appearance of a branch point in the λ plane for $E(\lambda)$ [except at $\lambda = 0$].

The rest of this paper is devoted mainly to the determination of the approximate location of these branch points for small $|\lambda|$. For this purpose we analyze Eq. (2) using WKB techniques.⁴ For large |x| the WKB solution to this equation behaves like

$$\Psi(x) \sim (x^2 + \lambda x^4)^{-1/4} \\ \times \exp\{-(6\lambda)^{-1}[(1 + \lambda x^2)^{3/2} - 1]\}.$$
 (5)

Figure 1 gives plots of $\operatorname{Re}\left\{\lambda^{-1}\left[(1+\lambda x^2)^{3/2}-1\right]\right\}=0$ in the complex x plane for $\arg\lambda=0$, $\frac{1}{2}\pi$, π , and $\frac{3}{2}\pi$. On these diagrams the turning points at $\pm i\lambda^{-1/2}$ are labeled by circles. Near the origin Eq. (2) becomes

$$(d^2/dx^2 + E - \frac{1}{4}x^2)\Psi(x) = 0$$
(6)

which is the defining equation for parabolic cylinder functions $D_{E-\frac{1}{2}}(x)$. The correct physical solution for Eq. (6) is

$$\Psi(x) = C_1 \left[D_{E - \frac{1}{2}}(x) \pm D_{E - \frac{1}{2}}(-x) \right]$$
(7)

for even- or odd-parity wave functions.

When the phase of λ is less than 270°, the parabolic cylinder function [Eq. (7)] must be asymptotically connected to the WKB solution [Eq. (5)].

FIG. 1. Curves in the complex x plane, where $\operatorname{Re}\{\lambda^{-1}[(1+\lambda x^2)^{1/2}-1]\}=0$ for various values of $\operatorname{arg}\lambda$. [The circle denotes the turning point at $x = \pm i\lambda^{-1/2}$. The symbol ∞ indicates the sectors in which the boundary condition Eq. (3a) applies.]

But the condition that Eq. (7) is asymptotically Eq. (5) is a condition on *E*. The result is that

$$E = 2n + \frac{1}{2}, n = 0, 1, 2, \cdots$$
 for even parity;
 $E = 2n + \frac{3}{2}, n = 0, 1, 2, \cdots$ for odd parity. (8)

However, when the phase of λ is near 270°, the above procedure is invalid. Equation (7) cannot be connected to Eq. (5) because the turning point lies in the path of the connection [see Fig. 1(a)]. Instead we use the following procedure:

(1) We define $r = xe^{\frac{1}{4}i\pi}$, $\rho = \lambda e^{-3\pi i/2}$, and $\epsilon = 4iE$. In terms of these variables Eq. (2) becomes

$$\left[\frac{d^2}{d\gamma^2} + \frac{1}{4}\left(-\epsilon + \gamma^2 - \rho\gamma^4\right)\right]\Psi(x) = 0.$$
(2a)

We are assuming that $|\lambda|$ is so small that $|\rho\epsilon| \ll 1$.

(2) Also define

$$\begin{aligned} r_0 &= \left\{ \left[1 - (1 - 4\rho\epsilon)^{1/2} \right] (2\rho)^{-1} \right\}^{1/2} \sim \epsilon^{1/2}, \\ r_1 &= \left\{ \left[1 + (1 - 4\rho\epsilon)^{1/2} \right] (2\rho)^{-1} \right\}^{1/2} \sim \rho^{-1/2} \end{aligned}$$

= position of turning point.

Note that $|r_0| \ll |r_1|$.

(3) We identify four regions: (a) r near the origin, $0 < |r| \ll |r_0| \ll |r_1|$; (b) $|r| \ll |r_1|$ but $|r| \gg |r_0|$; (c) r near the turning point, $|r| \le |r_1|$; and (d) r at the turning point; $|r| \sim |r_1|$.

(4) In region (a) we have Eq. (6) with solution Eq. (7).

(5) In region (b) we have the following WKB solution:

$$\Psi(x) = (-\epsilon + r^2 - \rho r^4)^{-1/4} \\ \times \{C_2 \exp[i \int_{\gamma_0}^{\gamma} 2^{-1} (-\epsilon + r^2 - \rho r^4)^{1/2} dr] \\ + C_3 \exp[-i \int_{\gamma_0}^{\gamma} 2^{-1} (-\epsilon + r^2 - \rho r^4)^{1/2} dr] \}$$

Note that ϵ can no longer be neglected as it was in Eq. (5). However, we can do the integrals because the r^4 term is not important. The result is

$$\begin{split} \Psi(x) &\sim r^{-1/2} \left\{ C_2 \exp i 4^{-1} \left[r^2 - \frac{1}{2} \epsilon - \epsilon \ln(2r\epsilon^{-1/2}) \right] \right. \\ &+ C_3 \exp - i 4^{-1} \left[r^2 - \frac{1}{2} \epsilon - \epsilon \ln(2r\epsilon^{-1/2}) \right] \right\}. \end{split}$$

(6) We continue the WKB solution from region (b) to (c):

$$\begin{split} \Psi(x) &\sim (-\epsilon + r^2 - \rho r^4)^{-1/4} \\ &\times \left\{ C_2 \exp i [\frac{1}{2}A - 3^{-1}2^{1/2}\rho^{-1/4}(r_1 - r)^{3/2}] \right. \\ &+ C_3 \exp - i [\frac{1}{2}A - 3^{-1}2^{1/2}\rho^{-1/4}(r_1 - r)^{3/2}] \right\}, \end{split}$$

where

$$A = \int_{\gamma_0}^{\gamma_1} (-\epsilon + r^2 - \rho r^4)^{1/2} dr,$$

$$A = 3^{-1} r_1^{3} [(1 + r_0^2 r_1^{-2}) E(k) - 2r_0^2 r_1^{-2} K(k)],$$

and $k^2 = 1 - r_0^2 r_1^{-2}$. *E* and *K* are the standard elliptic integrals.

(7) In region (d) Eq. (2) becomes an Airy equation. In this region

$$\Psi(x) = C_4 y^{1/2} 3^{-1/2} K_{1/3}(2y^{3/2}),$$

where $y = (18\rho^{1/2})^{-1/3}(r-\rho^{-1/2}+2^{-1}\epsilon\rho^{1/2}).$

It is extremely important that there is only one unknown constant, C_4 , in this solution. Only the $K_{1/3}$ function has the correct asymptotic behavior at ∞ required by the boundary conditions.

(8) By asymptotically connecting region (a) to (b) and region (c) to (d) we have calculated the ratio C_2/C_3 in two different ways. Thus by setting these two ratios equal we have a single transcendental equation relating E and ρ . The result is

$$\frac{\Gamma(\frac{1}{4} + \frac{1}{2}E)}{\Gamma(\frac{1}{4} - \frac{1}{2}E)} = \exp\left[i3^{-1}\rho^{-1} + \frac{5\pi i}{4} - E\ln(\frac{1}{2}\rho)\right]$$
(9a)

for even-parity wave functions;

$$\frac{\Gamma(\frac{3}{4} + \frac{1}{2}E)}{\Gamma(\frac{3}{4} - \frac{1}{2}E)} = \exp\left[i3^{-1}\rho^{-1} - \frac{5\pi i}{4} - E\ln(\frac{1}{2}\rho)\right]$$
(9b)

for odd-parity wave functions. Equation (9) is the major result of this paper and will be used to locate the singularities in $E(\lambda)$.

We substitute the WKB solution into Eq. (4). A lengthy evaluation gives

$$(d/dE)\ln\Gamma(\frac{1}{2}+E) = \pi 2^{-1}\cot(\frac{1}{4}\pi - \frac{1}{2}E\pi) + \ln 4/\rho$$
(10a)

for even-parity wave functions;

$$\frac{(d/dE)\ln\Gamma(\frac{1}{2}+E)}{=\pi 2^{-1}\cot(\frac{3}{4}\pi-\frac{1}{2}E\pi)+\ln 4/\rho}$$
(10b)

for odd-parity wave functions.

A straightforward but tedious analysis of Eqs. (9) and (10) gives the approximate location to first order in λ of the branch points of the analytic continuation $E(\lambda)$, for the low-lying energy levels. These branch points are precisely the branch points of Eq. (9). We summarize the results as follows:

(1) $E(\lambda)$ has branch points at

$$E = 2n + \frac{1}{2} + \eta, \eta = \left\{ \ln(24\pi N) + \gamma - \sum_{k=1}^{2n} k^{-1} \right\}^{-1},$$

when

$$\lambda = e^{3\pi i/2} \{ 6\pi N + 3\pi n - \frac{3}{4}\pi - 3i \\ \times [\ln(2n)! + 2^{-1} \ln \frac{1}{2}\pi - \ln \ln N \\ - (2n + \frac{1}{2}) \ln(24\pi N) - 1] \}^{-1}$$

for even parity;

$$E = 2n + \frac{3}{2} + \eta$$

$$\eta = \left\{ \ln[24\pi(N+1)] + \gamma - \sum_{k=1}^{2n+1} k^{-1} \right\}^{-1},$$

when

$$\lambda = e^{3\pi i/2} \left\{ 6\pi (N+1) + 3\pi n + \frac{3}{4}\pi - 3i \right.$$
$$\times \left[\ln(2n+1)! + 2^{-1} \ln \frac{1}{2}\pi - \ln \ln N \right.$$
$$\left. - (2n+\frac{3}{2}) \ln \left[24\pi (N+1) \right] - 1 \right]^{-1}$$

for odd parity. γ is Euler's constant and N is a positive integer.

(2) The resolvent $(z-H)^{-1}$ has poles at

$$\lambda = e^{3\pi i/2} \left\{ -3i \ln \frac{\Gamma(\frac{1}{4} + \frac{1}{2}z)}{\Gamma(\frac{1}{4} - \frac{1}{2}z)} + 6\pi N + \frac{1}{4}\pi \right\}^{-1}$$
(11a)

provided that $z \neq 2N + \frac{1}{2}$; and at

$$\lambda = e^{3\pi i/2} \left\{ -3i \ln \frac{\Gamma(\frac{3}{4} + \frac{1}{2}z)}{\Gamma(\frac{3}{4} - \frac{1}{2}z)} + 6\pi N - \frac{1}{4}\pi \right\}^{-1}$$
(11b)

provided that $z \neq 2N + \frac{3}{2}$. In Eq. (11) N is any sufficiently large positive integer.

That the resolvent has poles is a surprise to us and as far as we know this has not even been conjectured.5

 $E(\lambda)$ has some interesting symmetry properties. Since Eqs. (2) and (2a) are real in their respective variables, we have

$$E(\lambda) = E^*(\lambda^*) = -E^*(e^{3\pi i}\lambda^*) = -E(e^{3\pi i}\lambda).$$

As a result of this symmetry the branch cuts are very "short."

It is tempting to conjecture that many of the qualitative features of this model are also present in a realistic field theory.

We wish to thank Professor A. M. Jaffe for many interesting discussions.

*Work supported by a National Science Foundation Predoctoral Fellowship.

¹We believe that the question of convergence of perturbation series was first discussed by F. J. Dyson [Phys Rev. <u>85</u>, 631 (1952)].

²T. T. Wu, Phys. Rev. <u>125</u>, 1436 (1962).

³If the Hamiltonian is Wick ordered, there are fewer diagrams of order n because no internal line may have both ends connected to the same vertex. Thus the terms in the Wick-ordered perturbation series are slightly smaller than those of the non-Wick-ordered series. However this estimate holds for either perturbation series.

⁴T. T. Wu, Phys. Rev. <u>143</u>, 1110 (1966). Note that WKB techniques are used here solely to locate singularities approximately and <u>not</u> to define the analytic continuation of $E(\lambda)$.

⁵A. M. Jaffe [thesis, Princeton University, 1965 (unpublished)] has proved that for negative z, the resolvent is analytic in the cut λ plane with a cut along the negative real axis extending from the origin to $-\infty$. This is entirely consistent with our results which maintain that nothing interesting happens until the phase of the coupling constant reaches nearly 270°.

MODEL FOR THE VIOLATION OF CP INVARIANCE

T. Das

Tata Institute of Fundamental Research, Bombay, India (Received 5 June 1968)

An explicit model for *CP* nonconservation is constructed within the framework of the current-current form of weak interactions, which has $\Delta I = \frac{1}{2}$ for the *CP*-invariant part of (nonleptonic) H_{w} with $|\Delta S|=1$, violates the $\Delta I = \frac{1}{2}$ rule for the *CP*-nonconserving part, and has no observable effects of *T* nonconservation in the leptonic decay modes and the electric dipole moment of the neutron.

Since the time the violation of CP invariance was first noticed¹ through the decay of the longlived component K_L of the neutral kaon complex into $\pi^+\pi^-$, there have been considerable experimental as well as theoretical investigations about the nature and the structure of the CP-nonconserving interactions.² On the theoretical side, because of the elegance of the current-current theory of weak interactions with the V-A structure of the currents, one naturally wishes to see