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W'e consider a model of A, y field theory in which perturbation theory diverges and ana-
lytically continue the energy levels into the complex A. plane. Using %'KB technique, we

determine that the energy levels have an infinite sequence of branch points (where level
crossing occurs) with a limit point aA, =0. Thus the origin is not an isolated singularity.
The resolvent (z-H) has an infinite sequence of poles with a limit point at A, =0.

%'e investigate here a simple but nontrivial
model of p field theory where all of the follow-
ing questions can be readily answered:

(A) Is the perturbation series for the ground-
state energy, which is a power series in the cou-
pling constant A. , convergent for any A. t0?

(8) If not, does the ground-state energy, con-
sidered as a function of complex X or more gen-
erally as a function of some power n of A, have
an isolated singularity at A. =0?

(C) Is the resolvent (z-H) ', considered as a
function of A.

+ for fixed z, analytic at A. =O? If
not, is the point A. =0 an isolated singularity?

The answer to all these questions is no. More
precisely. '

(A) The ground-state energy, which is original-
ly defined only for positive values of A, can be
analytically continued into the complex X plane.
This analytic continuation of the ground-state en-
ergy has an infinite number of branch points,
which have a limit point at the origin A. =0. More-
over, at each branch point level crossing occurs.

(B) If o.' is chosen to be &, then the resolvent
has no branch cut. However, for all e, (z-H)
has an infinite number of poles, which have a
limit point at the origin.

The model which we consider in this paper is a
field theory of no space dimensions. The Ham-

cp = (~J) '(-iae

fa, at] = l.

-imt . f imt+ia e ),

The perturbation series for the ground-state en-
ergy is the sum of all connected Feynman dia-
grams having no external legs. The Feynman
rules are

(E -m +ie) ' for a propagator,

24K for a vertex,
+ OQ

i(2w) ' J dE for every loop integration.

The necessary symmetry numbers are the same
as in the (3+ I)-dimensional theory. '

For every diagram containing n vertices, there
are 2n internal lines and n+1 loop integrations.
All diagrams with n vertices add in phase and
the perturbation series is finite in every order.

The number of diagrams having n vertices is

iltonian is

H=&p +~~ p +X@.

In the interaction picture, the Fock representa-
tion for the field operator p is

-imt f imt
y=(2m) (ae +a e ),
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at least (n-1)'3 "and at most (2n-1) "8". Using
Feynman integral representations, uniform up-
per and lower bounds may be placed on all dia-
grams having n vertices. Let the formal pertur-
bation series for the ground-state energy be writ-
ten as

E(x)=~—Q(: mz .
nn= j.

Then En are positive numbers bounded below and
above by

AF(n)B (E «CF(n)D
n

where A, I3, C, and D are positive constants. '
This implies that the above series is divergent
for A. t 0. We thus conclude that the ground-state
energy is not an analytic function of A.+ about A.

=0 for any n.
The first 75 terms in the perturbation series

have been calculated by computer to four-place
accuracy. The result is

E - (1.171)(2n-l)!!(2)
n

for large n.
To get more detailed information on the analy-

tic structure of the ground-state energy, we use
the coordinate representation for the Hamiltonian
[Eq. (1)l:

q7
—2 ' x jl = j2 d/dx

and we let m =1 without loss of generality. Thus
the wave function g (x) satisfies

x exp(-(6A) '[(1+Ax')"'-I] j. (5)

Figure 1 gives plots of Re{A '[(I+Ax')'"-1])=0
in the complex x plane for argA. =O, &m, m, and

On these diagrams the turning points at
+ iA.

"' are labeled by circles. Near the origin
Eq. (2) becomes

(d'/dx'+E ~x')4(x) = 0 (6)

which is the defining equation for parabolic cylin-
der functions DE '(x). The correct physical so-
lution for Eq. (6) is

4'(x) =C [D,(x)+D, (-x)] (7)

for even- or odd-parity wave functions.
When the phase of A. is less than 270', the para-

bolic cylinder function [Eq. (7)] must be asymp-
totically connected to the WKB solution [Eq. (5)].

This analytic continuation is possible provided
that f4(x)'dx does not vanish. In fact, with suit-
able normalization

f4'(x)'dx= 0

is a necessary and sufficient condition for the ap-
pearance of a branch point in the A plane for E(A)
[except at X =0].

The rest of this paper is devoted mainly to the
determination of the approximate location of
these branch points for small I A. I. For this pur-
pose we analyze Eq. (2) using WKB techniques. 4

For large Ixl the WEB solution to this equation
behaves like

C(x)-(x'+ax') '"

(-d'/dx'+ —,'x'+ —,'tu )0 (x) =E(X)4(x)

together with the boundary conditions

lim 4'(x) = 0.

(2)

(3)

Equations (2) and (3) imply that 4'(x) behaves
roughly as exp(-A '" Ixl') for large I x I along the
real axis. Thus Eq. (3) holds not only on the real
axis but also for x in the sector I argxl (&m.

Until now A. has been positive. The coordinate
representation allows us to continue E(A.) into the
complex plane. For complex A, E(X) is defined
by Eq. (2) with the boundary condition

(a) arg X =0 (b) arg X = Tr/2

lim 4'(x) = 0
IxI-~

provided that

I arg(~x) + ~~ (argz) I « ~7r. (3a)

{c) arg A = Tr (d) arg X = 3'/2

FIG. 1. Curves in the complex z plane, where
Re(X [(1+Ax ) -1])=0 for various values of argA. .
I.The circle denotes the turning point at z = +iA

The symbol ~ indicates the sectors in which the bound-
ary condition Eq. {3a) applies. l
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But the condition that Eq. (7) is asymptotically
Eq. (5) is a condition on E T. he result is that

E = 2n+ &, n = 0, 1,2, ~ ~ for even parity;

E = 2n+ &, n = 0, 1,2, ~ ~ ~ for odd parity. (8)

where

A = f '( e-+r p-r')'"dr,
p

A =3 'r, '[(1+r,'r, ')E(k)-2r, 'r, 'K(k)],

However, when the phase of X is near 270, the
above procedure is invalid. Equation (7) cannot
be connected to Eq. (5) because the turning point
lies in the path of the connection [see Fig. 1(a)].
Instead we use the following procedure:

(1) We define r=xe4il/, p =he 33/i/2, and e
=4iE In t. erms of these variables Eq. (2) be-
comes

[d'/dr'+ —,'(—e+ r'-pr')]ll/(x) = 0. (2a)

%e are assuming that I A. I is so small that I pe I

&& 1.
(2) Also define

r = {[1—(I-4pe)"2](2p) 'j' ' E'"

[1+ (1 4pe)1/2](2p)
—1) 1/2

p
—1/2

and k'=1-r, 'r, '. E and K are the standard el-
liptic integrals.

(7) In region (d) Eq. (2) becomes an Airy equa-
tion. In this region

31/(x) C/I/23 1/2A (2y3/2)

where y = (18p'") '"(r p'/—'+2 'ep'").
It is extremely important that there is only one

unknown constant, C4, in this solution. Only the
Kz /3 function has the cor rect asymptotic behavio r
at ~ required by the boundary conditions.

(8) By asymptotically connecting region (a) to
(b) and region (c) to (d) we have calculated the
ratio C, /C, in two different ways. Thus by set-
ting these two ratios equal we have a single
transcendental equation relating E and p. The re-
sult is

= position of turning point. F(-,'+ —,'E) —,, 5~i
1

——exp i3 'p ' + -E ln(2p)I'(4- ~E)
(9a)

Note that !r, I « tryI.
(3) We identify four regions: (a) r near the ori

gin, 0& IrI « Ir, I « Ir, I; (b) IrI « Ir, I but IrI
» I ro I; (c) r near the turning point, I r I g I r I;
and (d) r at the turning point; lrI- Ir, I

(4) In region (a) we have Eq. (6) with solution
Eq. (7).

(5) In region (b) we have the following WKB so
lution:

for even-parity wave functions;

I"(-,' + —,'E), , 53/i
3 1 = exp i3 'p ' — Eln( —,p)-
4 2

(9b)

for odd-parity wave functions. Equation (9) is
the major result of this paper and will be used
to locate the singularities in E(A).

We substitute the WKB solution into Eq. (4). A
lengthy evaluation gives

31 (x) = (-e + r'-pr ')

x{C,exp[i j 2 '(-~+r pr4)'"dr]-
ro

+C, exp[-i j 2 '(-e+r' pr')"'dr]-)
rp

(d/dE)lnI'(-, +E)

= 3/2 ' cot(4'3/- 2E3/) + ln4/p

for even-parity wave functions;

(d/dE)lnF(2 +E)

(loa)

Note that & can no longer be neglected as it was
in Eq. (5). However, we can do the integrals be-
cause the r' term is not important. The result
is

4'(x}—r "'{C,expi4 '[r' 2e @in(2re -'—")]-

+ C, exp-i4 '[r' —2e-e ln(2re '")]j.
(6) We continue the WKB solution from region

(b) to (c):

31/(x) —
(—e + r' pr'}-

x {C expi[~~ 3 121/2p 1/4(r r)3/2]

+C, exp-i[2A-3 '2' 'p '"(r -r}'"]}

408

= 3/2 '

cot�

(—,3/- -,E 3/) + 1n4/p (lob)

E, =2n+ 2+31,

/I =~In(243/N)+r —Q k
k=1

for odd-parity wave functions.
A straightforward but tedious analysis of Eqs.

(9) and (10) gives the approximate location to
first order in A. of the branch points of the analy-
tic continuation E(A), for the low-lying energy
levels. These branch points are precisely the
branch points of Eq. (9). We summarize the re-
sults as follows:

(1) E(X) has branch points at
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when

3wi/2, 3
A. =e (6nX+ 3mn-4n-3i

&& [In(2n) ' + 2 ln2ii —ln lnN

(2—n+ 2)ln(24sN)-I]]

for even parity;

E =2n+ 2+g
2n+ I

( ~ )].
k=1

conjectured. '
E(&) has some interesting symmetry proper-

ties. Since Eqs. (2) and (2a) are real in their re-
spective variables, we have

E (X) =E ~(A ~) = E*(e-X*)= E(e-A).3' 3pi

As a result of this symmetry the branch cuts are
very "short. "

It is tempting to conjecture that many of the
qualitative features of this model are also pres-
ent in a. realistic field theory.

We wish to thank Professor A. M. Jaffe for
many interesting discussions.

when

3si/2
X = e {6m(N+ 1)+3wn+ —,'~-3i

-1
x [In(2n+I) t +2 in2s-InlnN

-(2n+ 2)ln[24it(N+ 1)]-1])

for odd parity. z is Euler's constant and N is a
positive integer.

(2) The resolvent (z —H) ' has poles at

3~i/2 ( . I'(-,'+ —,
'z), (-1

X = e I-3i ln | & + 6'+ 4w~ (11a)
4 22

provided that z c 2N+ &,
' and at

-3 '
ln

' 6 N (l-lb-)I'(-'--'z )

provided that zx2N+2. In Eq. (11) N is any suffi-
ciently large positive integer.

That the resolvent has poles is a surprise to
us and as far as we know this has not even been

*Work supported by a National Science Foundation
Predoctoral Fellowship.

'We believe that the question of convergence of per-
turbation series was first discussed by F. J. Dyson
fPhys Rev. ~85 631 (1952)l.

T. T. Wu, Phys. Rev. 125, 1436 (1962).
3If the Hamiltonian is Wick ordered, there are fewer

diagrams of order n because no internal line may have
both ends connected to the same vertex. Thus the
terms in the Wick-ordered perturbation series are
slightly smaller than those of the non-Wick-ordered
series. However this estimate holds for either pertur-
bation series.

T. T. Wu, Phys. Rev. 143, 1110 (1966). Note that
WEB techniques are used here solely to locate singu-
larities approximately and not to define the analytic
continuation of EQ.).

A. M. Jaffe fthesis, Princeton University, 1965 (un-
published)) has proved that for negative z, the resol-
vent is analytic in the cut A. plane with a cut along the
negative real axis extending from the origin to -.
This is entirely consistent with our results which
maintain that nothing interesting happens until the
phase of the coupling constant reaches nearly 270 .
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An explicit model for CP nonconservation is constructed within the framework of the
current-current form of weak interactions, which has &I=2 for the CP-invariant part of
(nonieptonic) H with ~b. S~ =1, violates the 61=2 rule for the CP-nonconserving part,
and has no observable effects of T nonconservation in the leptonic decay modes and the
electric dipole moment of the neutron.

Since the time the violation of CP invariance
was first noticed' through the decay of the long-
lived component EI. of the neutral kaon complex
into m+n, there have been considerable experi-
mental as well as theoretical investigations about

the nature and the structure of the CP-noncon-
serving interactions. ' On the theoretical side,
because of the elegance of the current-current
theory of weak interactions with the V-A struc-
ture of the currents, one naturally wishes to see
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