B1490 (1965); L. B. Okun', Yadern. Fiz. 1, 938 (1965)
[translation: Soviet J. Nucl. Phys. 1, 670 (1965)];
J. Prentki and M. Veltman, Phys. Letters 15, 88 (1965).
${ }^{7}$ This cut is symmetric about the experimentally measured center of the peak.
${ }^{8}$ T. D. Lee, Phys. Rev. 139, B1415 (1965).
${ }^{9}$ C. Baltay, P. Franzini, and J. Kim, private communication.
${ }^{10}$ The experimental detection efficiency of our appara-
tus for the decay $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ was calculated using Monte Carlo techniques. As a function of the Dalitz coordinate, y, it was found to fit the approximate form $\epsilon(y)$ $\approx 2(1-y) \%$. Note that the asymmetry as a function of x and $y, \boldsymbol{A}(x, y)$, is not dependent on detection efficiency. Hence, the determination of b and c is independent of Monte Carlo calculation.
${ }^{11}$ C. Bemporad et al., Phys. Letters 25B, 380 (1967).
${ }^{12}$ We would like to thank Professor C. N. Yang for pointing out this possibility to us.

ANALYTIC STRUCTURE OF ENERGY LEVELS IN A FIELD-THEORY MODEL

Carl M. Bender*
Department of Physics, Harvard University, Cambridge, Massachusetts

and
Tai Tsun Wu
Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts (Received 17 May 1968)

Abstract

We consider a model of $\lambda \varphi^{4}$ field theory in which perturbation theory diverges and analytically continue the energy levels into the complex λ plane. Using WKB technique, we determine that the energy levels have an infinite sequence of branch points (where level crossing occurs) with a limit point $a \lambda=0$. Thus the origin is not an isolated singularity. The resolvent $(z-H)^{-1}$ has an infinite sequence of poles with a limit point at $\lambda=0$.

We investigate here a simple but nontrivial model of φ^{4} field theory where all of the following questions can be readily answered:
(A) Is the perturbation series for the groundstate energy, which is a power series in the coupling constant λ, convergent for any $\lambda \neq 0$?
(B) If not, does the ground-state energy, considered as a function of complex λ or more generally as a function of some power α of λ, have an isolated singularity at $\lambda=0$?
(C) Is the resolvent $(z-H)^{-1}$, considered as a function of λ^{α} for fixed z, analytic at $\lambda=0$? If not, is the point $\lambda=0$ an isolated singularity?

The answer to all these questions is no. More precisely:
(A) The ground-state energy, which is originally defined only for positive values of λ, can be analytically continued into the complex λ plane. This analytic continuation of the ground-state energy has an infinite number of branch points, which have a limit point at the origin $\lambda=0$. Moreover, at each branch point level crossing occurs.
(B) If α is chosen to be $\frac{1}{3}$, then the resolvent has no branch cut. However, for all $z,(z-H)^{-1}$ has an infinite number of poles, which have a limit point at the origin.

The model which we consider in this paper is a φ^{4} field theory of no space dimensions. The Ham-
iltonian is

$$
\begin{equation*}
H=\frac{1}{2} \dot{\varphi}^{2}+\frac{1}{2} m^{2} \varphi^{2}+\lambda \varphi^{4} . \tag{1}
\end{equation*}
$$

In the interaction picture, the Fock representation for the field operator φ is

$$
\begin{aligned}
& \varphi=(2 m)^{-\frac{1}{2}}\left(a e^{-i m t}+a^{\dagger} e^{i m t}\right), \\
& \dot{\varphi}=\left(\frac{1}{2} m\right)^{\frac{1}{2}}\left(-i a e^{-i m t}+i a^{\dagger} e^{i m t}\right), \\
& {\left[a, a^{\dagger}\right]=1 .}
\end{aligned}
$$

The perturbation series for the ground-state energy is the sum of all connected Feynman diagrams having no external legs. The Feynman rules are

$$
\left(E^{2}-m^{2}+i \epsilon\right)^{-1} \text { for a propagator, }
$$

24λ for a vertex, $i(2 \pi)^{-1} \int_{-\infty}^{+\infty} d E$ for every loop integration.

The necessary symmetry numbers are the same as in the $(3+1)$-dimensional theory. ${ }^{2}$

For every diagram containing n vertices, there are $2 n$ internal lines and $n+1$ loop integrations. All diagrams with n vertices add in phase and the perturbation series is finite in every order.

The number of diagrams having n vertices is
at least $(n-1)!3^{-n}$ and at most $(2 n-1)!!8^{n}$. Using Feynman integral representations, uniform upper and lower bounds may be placed on all diagrams having n vertices. Let the formal perturbation series for the ground-state energy be written as

$$
E(\lambda)=\frac{1}{2} m-\sum_{n=1}^{\infty}\left(\frac{-\lambda}{m^{3}}\right)^{n} m E_{n}
$$

Then E_{n} are positive numbers bounded below and above by

$$
A \Gamma(n) B^{n}<E_{n}<C \Gamma(n) D^{n}
$$

where A, B, C, and D are positive constants. ${ }^{3}$ This implies that the above series is divergent for $\lambda \neq 0$. We thus conclude that the ground-state energy is not an analytic function of $\lambda^{\boldsymbol{\alpha}}$ about λ $=0$ for any α.

The first 75 terms in the perturbation series have been calculated by computer to four-place accuracy. The result is

$$
E_{n} \sim(1.171)(2 n-1)!!\left(\frac{3}{2}\right)^{n-1}
$$

for large n.
To get more detailed information on the analytic structure of the ground-state energy, we use the coordinate representation for the Hamiltonian [Eq. (1)]:

$$
\varphi=2^{-1 / 2} x, \quad \dot{\varphi}=-i 2^{-1 / 2} d / d x,
$$

and we let $m=1$ without loss of generality. Thus the wave function $\Psi(x)$ satisfies

$$
\begin{equation*}
\left(-d^{2} / d x^{2}+\frac{1}{4} x^{2}+\frac{1}{4} \lambda x^{4}\right) \Psi(x)=E(\lambda) \Psi(x) \tag{2}
\end{equation*}
$$

together with the boundary conditions

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty} \Psi(x)=0 \tag{3}
\end{equation*}
$$

Equations (2) and (3) imply that $\Psi(x)$ behaves roughly as $\exp \left(-\lambda^{-1 / 2}|x|^{3}\right)$ for large $|x|$ along the real axis. Thus Eq. (3) holds not only on the real axis but also for x in the sector $|\arg x|<\frac{1}{6} \pi$.

Until now λ has been positive. The coordinate representation allows us to continue $E(\lambda)$ into the complex plane. For complex $\lambda, E(\lambda)$ is defined by Eq. (2) with the boundary condition

$$
\lim _{|x| \rightarrow \infty} \Psi(x)=0
$$

provided that

$$
\begin{equation*}
\left|\arg (\pm x)+\frac{1}{6}(\arg \lambda)\right|<\frac{1}{6} \pi . \tag{3a}
\end{equation*}
$$

This analytic continuation is possible provided that $\int \Psi(x)^{2} d x$ does not vanish. In fact, with suitable normalization

$$
\begin{equation*}
\int \Psi(x)^{2} d x=0 \tag{4}
\end{equation*}
$$

is a necessary and sufficient condition for the appearance of a branch point in the λ plane for $E(\lambda)$ [except at $\lambda=0$].

The rest of this paper is devoted mainly to the determination of the approximate location of these branch points for small $|\lambda|$. For this purpose we analyze Eq. (2) using WKB techniques. ${ }^{4}$ For large $|x|$ the WKB solution to this equation behaves like

$$
\begin{align*}
\Psi(x) \sim & \left(x^{2}+\lambda x^{4}\right)^{-1 / 4} \\
& \times \exp \left\{-(6 \lambda)^{-1}\left[\left(1+\lambda x^{2}\right)^{3 / 2}-1\right]\right\} \tag{5}
\end{align*}
$$

Figure 1 gives plots of $\operatorname{Re}\left\{\lambda^{-1}\left[\left(1+\lambda x^{2}\right)^{3 / 2}-1\right]\right\}=0$ in the complex x plane for $\arg \lambda=0, \frac{1}{2} \pi, \pi$, and $\frac{3}{2} \pi$. On these diagrams the turning points at $\pm i \lambda^{-1 / 2}$ are labeled by circles. Near the origin Eq. (2) becomes

$$
\begin{equation*}
\left(d^{2} / d x^{2}+E-\frac{1}{4} x^{2}\right) \Psi(x)=0 \tag{6}
\end{equation*}
$$

which is the defining equation for parabolic cylinder functions $D_{E-\frac{1}{2}}(x)$. The correct physical solution for Eq. (6) is

$$
\begin{equation*}
\Psi(x)=C_{1}\left[D_{E-\frac{1}{2}}(x) \pm D_{E-\frac{1}{2}}(-x)\right] \tag{7}
\end{equation*}
$$

for even- or odd-parity wave functions.
When the phase of λ is less than 270°, the parabolic cylinder function [Eq. (7)] must be asymptotically connected to the WKB solution [Eq. (5)].

FIG. 1. Curves in the complex x plane, where $\operatorname{Re}\left\{\lambda^{-1}\left[\left(1+\lambda x^{2}\right)^{1 / 2}-1\right]\right\}=0$ for various values of $\arg \lambda$. [The circle denotes the turning point at $x= \pm i \lambda^{-1 / 2}$. The symbol ∞ indicates the sectors in which the boundary condition Eq. (3a) applies.]

But the condition that Eq. (7) is asymptotically Eq. (5) is a condition on E. The result is that

$$
\begin{align*}
& E=2 n+\frac{1}{2}, n=0,1,2, \cdots \text { for even parity } \\
& E=2 n+\frac{3}{2}, n=0,1,2, \cdots \text { for odd parity } \tag{8}
\end{align*}
$$

However, when the phase of λ is near 270°, the above procedure is invalid. Equation (7) cannot be connected to Eq. (5) because the turning point lies in the path of the connection [see Fig. 1(a)]. Instead we use the following procedure:
(1) We define $r=x e^{\frac{1}{4} i \pi}, \rho=\lambda e^{-3 \pi i / 2}$, and ϵ $=4 i E$. In terms of these variables Eq. (2) becomes

$$
\begin{equation*}
\left[d^{2} / d r^{2}+\frac{1}{4}\left(-\epsilon+r^{2}-\rho r^{4}\right)\right] \Psi(x)=0 \tag{2a}
\end{equation*}
$$

We are assuming that $|\lambda|$ is so small that $|\rho \epsilon|$ $\ll 1$.
(2) Also define

$$
\begin{aligned}
r_{0} & =\left\{\left[1-(1-4 \rho \epsilon)^{1 / 2}\right](2 \rho)^{-1}\right\}^{1 / 2} \sim \epsilon^{1 / 2}, \\
r_{1} & =\left\{\left[1+(1-4 \rho \epsilon)^{1 / 2}\right](2 \rho)^{-1}\right\}^{1 / 2} \sim \rho^{-1 / 2} \\
& =\text { position of turning point. }
\end{aligned}
$$

Note that $\left|r_{0}\right| \ll\left|r_{1}\right|$.
(3) We identify four regions: (a) r near the origin, $0<|r| \ll\left|r_{0}\right| \ll\left|r_{1}\right|$; (b) $|r| \ll\left|r_{1}\right|$ but $|r|$ $\gg\left|r_{0}\right|$; (c) r near the turning point, $|r| \leqslant\left|r_{1}\right|$; and (d) r at the turning point; $|r| \sim\left|r_{1}\right|$.
(4) In region (a) we have Eq. (6) with solution Eq. (7).
(5) In region (b) we have the following WKB solution:

$$
\begin{aligned}
\Psi(x)= & \left(-\epsilon+r^{2}-\rho r^{4}\right)^{-1 / 4} \\
& \times\left\{C_{2} \exp \left[i \int_{r_{0}}^{r_{2}}{ }^{-1}\left(-\epsilon+r^{2}-\rho r^{4}\right)^{1 / 2} d r\right]\right. \\
& \left.+C_{3} \exp \left[-i \int_{r_{0}}^{r} 2^{-1}\left(-\epsilon+r^{2}-\rho r^{4}\right)^{1 / 2} d r\right]\right\}
\end{aligned}
$$

Note that ϵ can no longer be neglected as it was in Eq. (5). However, we can do the integrals because the r^{4} term is not important. The result is

$$
\begin{aligned}
\Psi(x) \sim & r^{-1 / 2}\left\{C_{2} \exp i 4^{-1}\left[r^{2}-\frac{1}{2} \epsilon-\epsilon \ln \left(2 r \epsilon^{-1 / 2}\right)\right]\right. \\
& \left.+C_{3} \exp -i 4^{-1}\left[r^{2}-\frac{1}{2} \epsilon-\epsilon \ln \left(2 r \epsilon^{-1 / 2}\right)\right]\right\} .
\end{aligned}
$$

(6) We continue the WKB solution from region (b) to (c):

$$
\begin{aligned}
\Psi(x) \sim & \left(-\epsilon+r^{2}-\rho r^{4}\right)^{-1 / 4} \\
& \times\left\{C_{2} \exp i\left[\frac{1}{2} A-3^{-1} 2^{1 / 2} \rho^{-1 / 4}\left(r_{1}-r\right)^{3 / 2}\right]\right. \\
& \left.+C_{3} \exp -i\left[\frac{1}{2} A-3^{-1} 2^{1 / 2} \rho^{-1 / 4}\left(r_{1}-r\right)^{3 / 2}\right]\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& A=\int_{r_{0}}^{r_{1}}\left(-\epsilon+r^{2}-\rho r^{4}\right)^{1 / 2} d r \\
& A=3^{-1} r_{1}^{3}\left[\left(1+r_{0}^{2} r_{1}^{-2}\right) E(k)-2 r_{0}^{2} r_{1}^{-2} K(k)\right]
\end{aligned}
$$

and $k^{2}=1-r_{0}^{2} r_{1}^{-2} . E$ and K are the standard elliptic integrals.
(7) In region (d) Eq. (2) becomes an Airy equation. In this region

$$
\Psi(x)=C_{4} y^{1 / 2} 3^{-1 / 2} K_{1 / 3}\left(2 y^{3 / 2}\right),
$$

where $y=\left(18 \rho^{1 / 2}\right)^{-1 / 3}\left(r-\rho^{-1 / 2}+2^{-1} \epsilon \rho^{1 / 2}\right)$.
It is extremely important that there is only one unknown constant, C_{4}, in this solution. Only the $K_{1 / 3}$ function has the correct asymptotic behavior at ∞ required by the boundary conditions.
(8) By asymptotically connecting region (a) to (b) and region (c) to (d) we have calculated the ratio C_{2} / C_{3} in two different ways. Thus by setting these two ratios equal we have a single transcendental equation relating E and ρ. The result is

$$
\begin{equation*}
\frac{\Gamma\left(\frac{1}{4}+\frac{1}{2} E\right)}{\Gamma\left(\frac{1}{4}-\frac{1}{2} E\right)}=\exp \left[i 3^{-1} \rho^{-1}+\frac{5 \pi i}{4}-E \ln \left(\frac{1}{2} \rho\right)\right] \tag{9a}
\end{equation*}
$$

for even-parity wave functions;

$$
\begin{equation*}
\frac{\Gamma\left(\frac{3}{4}+\frac{1}{2} E\right)}{\Gamma\left(\frac{3}{4}-\frac{1}{2} E\right)}=\exp \left[i 3^{-1} \rho^{-1}-\frac{5 \pi i}{4}-E \ln \left(\frac{1}{2} \rho\right)\right] \tag{9b}
\end{equation*}
$$

for odd-parity wave functions. Equation (9) is the major result of this paper and will be used to locate the singularities in $E(\lambda)$.

We substitute the WKB solution into Eq. (4). A lengthy evaluation gives

$$
\begin{align*}
& (d / d E) \ln \Gamma\left(\frac{1}{2}+E\right) \\
& \quad=\pi 2^{-1} \cot \left(\frac{1}{4} \pi-\frac{1}{2} E \pi\right)+\ln 4 / \rho \tag{10a}
\end{align*}
$$

for even-parity wave functions;

$$
\begin{align*}
& (d / d E) \ln \Gamma\left(\frac{1}{2}+E\right) \\
& \quad=\pi 2^{-1} \cot \left(\frac{3}{4} \pi-\frac{1}{2} E \pi\right)+\ln 4 / \rho \tag{10b}
\end{align*}
$$

for odd-parity wave functions.
A straightforward but tedious analysis of Eqs.
(9) and (10) gives the approximate location to first order in λ of the branch points of the analytic continuation $E(\lambda)$, for the low-lying energy levels. These branch points are precisely the branch points of Eq. (9). We summarize the results as follows:
(1) $E(\lambda)$ has branch points at

$$
\begin{aligned}
& E=2 n+\frac{1}{2}+\eta, \\
& \eta=\left\{\ln (24 \pi N)+\gamma-\sum_{k=1}^{2 n} k^{-1}(-1,\right.
\end{aligned}
$$

when

$$
\begin{aligned}
\lambda & =e^{3 \pi i / 2}\left\{6 \pi N+3 \pi n-\frac{3}{4} \pi-3 i\right. \\
& \times\left[\ln (2 n)!+2^{-1} \ln \frac{1}{2} \pi-\ln \ln N\right. \\
& \left.\left.-\left(2 n+\frac{1}{2}\right) \ln (24 \pi N)-1\right]\right\}^{-1}
\end{aligned}
$$

for even parity;

$$
\begin{aligned}
& E=2 n+\frac{3}{2}+\eta \\
& \eta=\left\{\ln [24 \pi(N+1)]+\gamma-\sum_{k=1}^{2 n+1} k^{-1}\right\}^{-1},
\end{aligned}
$$

when

$$
\begin{aligned}
\lambda & =e^{3 \pi i / 2}\left\{6 \pi(N+1)+3 \pi n+\frac{3}{4} \pi-3 i\right. \\
& \times\left[\ln (2 n+1)!+2^{-1} \ln \frac{1}{2} \pi-\ln \ln N\right. \\
& \left.\left.-\left(2 n+\frac{3}{2}\right) \ln [24 \pi(N+1)]-1\right]\right\}^{-1}
\end{aligned}
$$

for odd parity. γ is Euler's constant and N is a positive integer.
(2) The resolvent $(z-H)^{-1}$ has poles at

$$
\begin{equation*}
\lambda=e^{3 \pi i / 2}\left\{-3 i \ln \frac{\Gamma\left(\frac{1}{4}+\frac{1}{2} z\right)}{\Gamma\left(\frac{1}{4}-\frac{1}{2} z\right)}+6 \pi N+\frac{1}{4} \pi\right\}^{1-1} \tag{11a}
\end{equation*}
$$

provided that $z \neq 2 N+\frac{1}{2}$; and at

$$
\begin{equation*}
\left.\lambda=e^{3 \pi i / 2}\left\{-3 i \ln \frac{\Gamma\left(\frac{3}{4}+\frac{1}{2} z\right)}{\Gamma\left(\frac{3}{4}-\frac{1}{2} z\right)}+6 \pi N-\frac{1}{4} \pi\right\}\right\}^{-1} \tag{11b}
\end{equation*}
$$

provided that $z \neq 2 N+\frac{3}{2}$. In Eq. (11) N is any sufficiently large positive integer.
That the resolvent has poles is a surprise to us and as far as we know this has not even been
conjectured. ${ }^{5}$
$\boldsymbol{E}(\lambda)$ has some interesting symmetry properties. Since Eqs. (2) and (2a) are real in their respective variables, we have

$$
E(\lambda)=E^{*}\left(\lambda^{*}\right)=-E^{*}\left(e^{3 \pi i} \lambda^{*}\right)=-E\left(e^{3 \pi i} \lambda\right) .
$$

As a result of this symmetry the branch cuts are very "short."
It is tempting to conjecture that many of the qualitative features of this model are also present in a realistic field theory.
We wish to thank Professor A. M. Jaffe for many interesting discussions.
*Work supported by a National Science Foundation Predoctoral Fellowship.
${ }^{1}$ We believe that the question of convergence of perturbation series was first discussed by F. J. Dyson [Phys Rev. 85, 631 (1952)].
${ }^{2}$ T. T. Wu, Phys. Rev. 125, 1436 (1962).
${ }^{3}$ If the Hamiltonian is Wick ordered, there are fewer diagrams of order n because no internal line may have both ends connected to the same vertex. Thus the terms in the Wick-ordered perturbation series are slightly smaller than those of the non-Wick-ordered series. However this estimate holds for either perturbation series.
${ }^{4}$ T. T. Wu, Phys. Rev. 143, 1110 (1966). Note that WKB techniques are used here solely to locate singularities approximately and not to define the analytic continuation of $E(\lambda)$.
${ }^{5}$ A. M. Jaffe Ithesis, Princeton University, 1965 (unpublished)] has proved that for negative z, the resolvent is analytic in the cut λ plane with a cut along the negative real axis extending from the origin to $-\infty$. This is entirely consistent with our results which maintain that nothing interesting happens until the phase of the coupling constant reaches nearly 270°.

MODEL FOR THE VIOLATION OF $C P$ INVARIANCE

T. Das

Tata Institute of Fundamental Research, Bombay, India
(Received 5 June 1968)
An explicit model for $C P$ nonconservation is constructed within the framework of the current-current form of weak interactions, which has $\Delta I=\frac{1}{2}$ for the $C P$-invariant part of (nonleptonic) H_{w} with $|\Delta S|=1$, violates the $\Delta I=\frac{1}{2}$ rule for the $C P$-nonconserving part, and has no observable effects of T nonconservation in the leptonic decay modes and the electric dipole moment of the neutron.

Since the time the violation of $C P$ invariance was first noticed ${ }^{1}$ through the decay of the longlived component K_{L} of the neutral kaon complex into $\pi^{+} \pi^{-}$, there have been considerable experimental as well as theoretical investigations about
the nature and the structure of the $C P$-nonconserving interactions. ${ }^{2}$ On the theoretical side, because of the elegance of the current-current theory of weak interactions with the $V-A$ structure of the currents, one naturally wishes to see

