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Estimates are made of the expected gravitational radiation from the pulsars, assum-
ing that they are either oscillating dwarf or neutron stars, or fast rotating binaries. It
is concluded that a radiative Riemann tensor of magnitude &10 cm may be expected
on earth as a consequence of some of these assumptions. A large detector of the type
already developed is likely to succeed in detecting a radiative Riemann tensor exceed-
ing 10 cm at pulsar frequencies.

A number of rapidly pulsating radio sources
have recently been observed. ' These are char-
acterized by radio emission at regular intervals
of the order of a second. The unusually great
regularity suggests some lightly damped period-
ic process such as rotation of a small component
about a large one, or the oscillations of a very
dense star. Either process might result in ap-
preciable amounts of gravitational radiation.
The recently developed methods of searching'
for such radiation mould appear capable of detec-
tion under favorable conditions if the objects are
not too distant and if other sources of noise do
not interfere.

Gravitational radiation at pulsar frequencies.
—The weak-field approximations of general rela-
tivity enable us to estimate the gravitational ra-
diation fields from either rotating or vibrating
systems. At large distances the curvature ten-
sor comPonent Rp.p. which drives a gravitational

Oops
wave detector is given approximately by

In (1) G is the constant of gravitation, and I is
the moment of inertia or quadrupole moment.
For vibration, ~ is the angular frequency given
in terms of the vibrational frequency v by &
=2vv. For a rotating system, w is given in
terms of the angular velocity d/t//dt by & =2dy/
dt. The numerical factor A will depend on the
details of the system, but A is ordinarily greater
that —,

' and less than 10. For a rotating system
with components having masses m, and m2 we
have

In (2) r, and r, are distances from the center of
mass. We write

+r2,c 1

The reduced mass p. is given by

p = m, m2/M. (5)

Making use of (3)-(5) enables us to write (2) as

I= pr
C

(6)

From the Kepler problem it is known that the
angular velocity d/t//dt is given by

~d GM

c

For a vibrating system an expression similar to
(9) is expected with //. , the effective vibrating
mass, now defined by (9).

The strains to be expected in a gravitational
wave detector by (9) may be calculated using the
expressions already given. ' The expected strain
is given by

e=c R . , Q/(u .
OsOs

For rotating systems a decreasing period is
expected as a result of radiation-damping re-
duction in size of the orbit. The great stability
of the4 observed periods probably rules this out
as a pomerful gravitational radiator. '&' For vi-
brational motions of a dwarf the effect of damp-
ing on the period will be small. For this case,
if we assume that M~10 3 g, p=10 g, r~10
cm, and &=2m, (9) is evaluated as

~5 x10~2 cm-2
iOip

(6) may be written as

I= t (4GM/~')'".

For a rotating system, therefore, we may ex-
pect a radiation-field Riemann tensor

/1 g 5/s ~/$~&/s '16)'" t —" (9)

M=m~+m2 ~ (4) Several possibilities are suggested by (11). One
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is to use as a detector the earth itself. A con-
servative estimate is @=1 in which case the ex-
pected strain is given by

]0 (12)

For a sound velocity in earth oi 4000 m/sec the
peak displacements implied by (11) are given by
5 with

5=egi2=2xl0-" cm. (13)

Strains as small as (14) have already been ob-
served. ' Let us further assume that a detector
consisting of a metal beam is employed with end
loading to reduce its resonant length to manage-
able proportions. A reasonable length would be
=50 m, with an end loading of 10' g. For obser-
vations over roughly one month we would expect
the thermal fluctuations to be with rms displace-
ment d given by —,'m& '(d2) = —,'k T. For T =4'K this
gives

(d 2) & 12 = 3 x 1 0

with implied strain

3 x10~3
0.6 x10

(15)

(16)

A study of the power spectrum of the microseisms
indicates that for a bandwidth of about one cycle
per hour, the ground displacement amplitude ex-
ceeds (13) by about 8 orders; therefore, the use
of the earth will be difficult. However, the use
of the moon is a better possibility.

A more promising alternative is to use a large
mass well isolated from earth, which represents
an extension, larger in mass and lower in fre-
quency than the apparatus already described. ' A
@=10' is considered feasible, ' in which case (11)
gives

(14)

The pulsar-induced strain is seen to exceed the
thermal fluctuations even for a month's opera-
tion. Longer integration times, approaching one
year, would yield improvement in signal-to-noise
ratio.

The strain given by (12) is also the expected
fractional change in distance between almost
free bodies. For the earth-moon system an os-
cillation amplitude-4 x10 "cm would be ex-
pected as a pulsar frequency modulation of the
distance as measured by the proposed laser cor-
ner-reflector experiments. '

The estimates given here are very rough and
may change substantially as more observational
evidence is accumulated on the pulsars. Indepen-
dent suggestions for search for gravitational ra-
diation at pulsar frequencies have been made by
Dyson. ' I thank H. Zapolsky and C. W. Misner
for very helpful discussion.
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