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A counter example is constructed to an alleged theorem that direct-channel resonances
lying on rising Regge trajectories cannot asymptotically simulate a crossed-charnel Reg-
ge amplitude in the direct-channel physical region. The crucial point is that the residue
of a Regge pole falls strongly with energy.

In a recent Letter, Mandular and Slansky' have
alleged a theorem that "finitely spaced Regge tra-
jectories of resonances do not yield Regge as-
ymptotic behavior. " They thus conclude the im-
possibility of the suggestion of Dolen, Horn, and
Schmid' and Schmid~ that the sum of direct-chan-
nel resonances can yield an amplitude which
resembles, after some energy averaging, a
crossed-channel Regge exchange amplitude. But
the attempted proof of the theorem contains a fal-
lacy, namely, the statement that even when many
s-channel trajectories of resonances are includ-
ed, "the asymptotic s dependence of the right-
hand side [i.e. , s-channel resonances] is still
dominated by the highest trajectory. " This is not
so if the residue of the trajectory falls sufficient-
ly rapidly with s. In fact, it is well known that
for trajectories rising faster than v s such a fall
(a) is necessary in order to avoid violation of
polynomial boundedness, a property of Begge am-
plitudes, and (b) is observed experimentally.

This behavior is explicitly exhibited by a count-
er example to the theorem of Ref. 1, which is
simply constructed as follows: We take a Regge
amplitude As(s, t) = P(t)s+( ), project it into s-
channel partial waves, ' and observe what distri-
bution of s-channel resonances is required t"
yield these partial-wave amplitudes. ' We can do
the projection analytically if we make the follow-
ing approximations, which are reasonable when
s is large: (i) As(s, t)-ecfsb+at for small it),
(ii) Pf(cos8) =SO(l8), and (iii) the lower limit -1
on the cos~ integration is ignored, the integra-
tion being carried to -~. Then

A (s)—= z dze s P (z), f = —,'s(z —1)
1 ct b+ at

,f d8ex-p(-4as8 )J (l8)
0 0

2 b=exp[-l /as]s /as,

where a=c+alns. We notice that A~ is large for
P (as, but (exponentially) small for P» as. Ob-
viously, 2(a)"' plays the role of the size of the

interaction region.
We now make the hypothesis that the partial-

wave absorptive amplitudes Af(s) are given by
the sum of s-channel resonances, energy aver-
aged; that is, Af(s) is the density of (partial)
widths of l-wave resonances. We further hypoth-
esize that these resonances lie on rising trajec-
tories of which the leading one is the same as
the leading trajectory in the t channel which de-
termined As originally. These conditions do not
determine the s-channel trajectories; we arbi-
trarily assume them to be linear, parallel, and
equispaced: aN(s) =as+ b N, N&-O. The trajec-
tory residues pN(s) are then proportional to the
(partial) widths of the resonances on the trajecto-
ries, and hence the hypothesis implies that PN(s)
be proportional to AoN(s), i.e. ,

2 b-1
P (s)-exp[-(as+ b-N) /as]s

N (2)

for as+ b) N= 0. This is a reasonable result,
except for one apparent difficulty: Af(s) is non-
vanishing for I &as+ 6, whereas PN(s), Eq. (2),
must vanish for nN&as+b, because N)0 [i.e. ,
there is a highest trajectory] But wh. en s is
large, Af(s) is exponentially small in this region,
and setting it to zero there makes only an expo-
nentially small error in the As(s, f) which is re-
constructed from Af(s).

Thus we have exhibited a particular set of s-
channel Regge trajectories whose resonances
constitute an amplitude which closely approxi-
mates a t-channel Regge form. In this model
one has, for large s,

P (s) - exp[-(a'/n)s].

This shows explicitly that the leading s-channel
trajectory does not dominate at large s because
its residue falls exponentially with s.

I would like to thank Dr. J. Finkelstein for con-
versations on this subject some time ago.
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We report on cross-sectional measurements on the photoproduction of 7t and g me-
sons on hydrogen for a range in t of -0.2 to -0.9 (GeV/c)2 and for a range of energies
6.0-16.0 GeV. The sharp dip observed at lower energies at t =-0.5 for ~ production be-
comes less pronounced at higher energies. This implies in the Regge framework the
B meson trajectory dominates at higher energies. Our one angular distribution for p
production at 6.0 GeV shows no dip at t =-0.5 as do the m data.

Measurements have been made on forward m'

photoproduction y+P —~'+P in the range 2-5.8
GeV. ' The results show a pronounced dip in the
cross section at a value of the square of the four-
momentum transfer, f = -0.5 (GeV/c)'. There
has been considerable speculation on the energy
dependence of this process at higher energies. 2

We have recently completed measurements at in-
cident photon energies up to 17.8 GeV.

A collimated beam of bremsstrahlung photons
from the Stanford Linear Accelerator Center lin-
ear accelerator irradiated the liquid-hydrogen
target, a 12-in. long by 2-in. diam thin Mylar
cylinder. The yield of protons recoiling from the
target was measured as a function of angle for a
variety of proton momenta and primary energies.

The measurements were made with a 100-in.
radius, 90 -bend, second-order-corrected spec-
trometer which focused momenta and production
angles in a single focal plane normal to the im-

pinging particles. The dispersion of this spec-
trometer was 1.66 in. per percent in momentum,
and 0.32 in. per mrad in production angle. Pro-
tons were identified and separated from pions on
the basis of ionization loss in three trigger coun-
ters and by vetoing pions with a Lucite Cheren-
kov counter. At all momenta, pion contamination
was less than a few percent of the proton signal.
The trigger counters were put in coincidence
with eight hodoscope counters 10 in. by $ in. by
—,
' in. thick located at the focal plane. The whole
counter assembly was rotatable so that the axes
of the hodoscope counters could be aligned with
kinematic "missing-mass lines" in the focal
plane. The resolution of the apparatus was limit-
ed by the multiple Coulomb scattering of parti-
cles in the liquid-hydrogen target.

The beam intensity was continuously monitored
with both a Cherenkov monitor and secondary-
emission quantameter. The secondary-emission
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