listed by A Donnachie et al., Phys. Letters 26B, 161 (1968). For KN scattering we use the Y_0^* and Y_1^* states listed by A. H. Rosenfeld et al., Rev. Mod. Phys. 40, 77 (1968). Three of these states Y_0 *(1670), Y_1 *(1660), and Y_1 *(1690), involve serious experimental ambiguities, but their total effect on our calculations is not very significant. For resonances we introduce a threshold factor $(q/q_R)^{2l+1}$, where q_R is the c.m. momentum of the elastic decay products of the resonance. We modify only the $q < q_R$ part of the Breit-Wigner form. The sensitivity of our calculations with respect to (a) variations in resonance parameters, (b) possible other ways of making threshold corrections, (c) possible nonexistence of some of the high-mass N^* and Y^* states, and (d) different choices of KNY couplings is reflected by the error bars in Figs. 1 and 3.

⁷V. Barger and M. Olsson, Phys. Rev. <u>151</u>, 1125 (1966). See also V. Barger and L. Durand, Phys. Letters 26B, 588 (1968).

⁸Im $\overline{A'}^{(+)}(\nu, 0)$ is taken from G. Hohler <u>et al.</u>, Z. Phys-

ik <u>180</u>, 430 (1964). ⁹If $\alpha_P(0) = 1$, $S_3^P = 0.6S_1^P$. An error of ±10% in S_3^P changes $\alpha_P(0)$ between 0.3 and 1.9. The ambiguities in the resonance parameters above 1.5 BeV are at least of that order of magnitude.

¹⁰Among the many high-energy fits to $A'^{(+)}$, we have chosen three "typical" ones with which we compare our FESR results. These are solution 1 of W. Rarita et al., Phys. Rev. 165, 1615 (1968) (hereafter denoted as I);

C. B. Chiu et al., Phys. Rev. 161, 1563 (1967) (denoted as II); and K. Z. Foley et al., Phys. Rev. Letters 19, 330 (1967) (denoted as III).

¹¹J. W. Kim, Phys. Rev. Letters 19, 1074, 1079

(1967); N. Zovko, Phys. Letters 23, 143 (1966).

¹²R. L. Warnock and G. Frye, Phys. Rev. <u>138</u>, B947 (1965).

¹³R. J. N. Phillips and W. Rarita, Phys. Rev. <u>139</u>, B1336 (1965).

¹⁴Chiu et al., Ref. 10.

¹⁵G. F. Chew, Phys. Rev. Letters <u>16</u>, 60 (1966).

¹⁶M. Gell-Mann, in Proceedings of the International Conference on High Energy Physics, CERN, 1962, edited by J. Prenski (CERN European Organization for Nuclear Research, Geneva, Switzerland, 1962), p. 539. ¹⁷The absence of a dip in $\pi^- p \rightarrow \eta n$ hints that the cor-

rect mechanism is that of Gell-Mann.

¹⁸M. Krammer and U. Maor, Nuovo Cimento <u>52A</u>, 308 (1967).

¹⁹Igi and Matsuda, Ref. 2.

²⁰Several recent papers dealing with high-energy Regge fits have claimed that the no-compensation mechanism is preferred for P', and that a double zero at $\alpha_{P'}$ =0 probably exists in $\beta_{P'}^{A}$. Our result is numerically very close to this possibility since our two different zeros of $\beta_{P'}{}^A$ are not very far apart. It is only $\beta_{P'}{}^B$ (about which we know very little at high energies, experimentally) that tells us to prefer the Gell-Mann mechanism.

s-wave K_{π} interaction in the K_{l3} decay mode

R. C. Field* and P. B. Jones

Nuclear Physics Laboratory, Oxford, England (Received 13 June 1968)

Recent measurements of the $K_{\mu3}/K_{e3}$ relative branching ratio make possible an evaluation of the matrix element of the divergence of the vector current which is independent of f_+ . The matrix element of the divergence does not depend on the mass of a possible intermediate vector boson W. The experimental data are best fitted by a resonance in the isospin- $\frac{1}{2}$ s-wave $K\pi$ system in the interval 750-1200 MeV.

There have been several studies 1^{-4} of the dispersion relation which the matrix element of the divergence of the strangeness-changing vector current is believed to satisfy in the K_{l3} decay mode. Application of the elastic unitarity condition to determine the phase of the matrix element on the branch cut from the $K\pi$ threshold leads to a relation between the divergence of the vector current and the s-wave $K\pi$ interaction. We wish to show that recent experimental measurement⁵ on the K_{I3}^+ decay modes make possible an evaluation of the divergence of the current which is sufficiently accurate to give direct information on the isospin- $\frac{1}{2}$ s-wave $K\pi$ interaction. The calculation of the divergence depends on two considerations:

(a) The mass of a possible intermediate vector boson W does not enter the relation between the divergence of the vector current and the s-wave $K\pi$ interaction. The matrix element of the weak current in K_{l3} decay is

$$f_{+}(P_{K}+P_{\pi})_{\mu}+f_{-}q_{\mu} = (1-s/m_{W}^{2})^{-1}[g_{+}(P_{K}+P_{\pi})_{\nu}+g_{-}q_{\nu}](\delta_{\mu}^{\nu}-q^{\nu}q_{\mu}/m_{W}^{2}),$$
(1)

where $q_{\mu} = (P_K - P_{\pi})_{\mu}$ and $s = q_{\mu}q^{\mu}$ is the square of the invariant mass of the leptons. The form factors f_{\pm}, g_{\pm} are functions of s. The f_{\pm} are the form factors which are experimentally measured, and the g_{\pm} define the structure of the π, K , and W boson vertex:

$$f_{+} = g_{+} (1 - s/m_{W}^{2})^{-1}, \qquad (2)$$

$$f_{-} = g_{-} - g_{+} [(m_{K}^{2} - m_{\pi}^{2})/m_{W}^{2}] \times (1 - s/m_{W}^{2})^{-1}. \qquad (3)$$

The form factor g_+ satisfies a dispersion relation which can be solved in terms of the *p*-wave $K\pi$ phase shift. Therefore, the mass of the *W* boson enters the relation between the experimentally measured form factor f_+ and the *p*-wave $K\pi$ interaction. However, the divergence of the current D(s) can be written in terms of either pair of form factors and is independent of the mass of the *W* boson,

$$(m_{K}^{2}-m_{\pi}^{2})f_{+}+sf_{-}=(m_{K}^{2}-m_{\pi}^{2})g_{+}+sg_{-}.$$
 (4)

The dispersion relation satisfied by [D(s)-D(0)]/s can be solved^{6,7} in terms of the phase δ of D(s) on the branch cut from the $K\pi$ threshold s_0 to give

$$D(s) = D(0)e^{u(s)}; \quad u(s) = \frac{s}{\pi} \int_{s_0}^{\infty} ds' \frac{\delta(s')}{s'(s'-s)}.$$
 (5)

A relation suitable for experimental evaluation can be obtained by an expansion in powers of s,

$$\left(\frac{\partial D}{\partial s}\right)_{s=0} = \left(\frac{m_K^2}{m_\pi^2} - 1\right)\lambda_+ + \xi$$

$$= \frac{1}{\pi} (m_K^2 - m_\pi^2) \int_{s_0}^{\infty} ds' \frac{\delta(s')}{s'^2}, \qquad (6)$$

where $\lambda_{+} = m_{\pi}^{2} (\partial f_{+} / \partial s)_{s=0}$, $\xi = f_{-}(0)/f_{+}(0)$, and $f_{+}(0) = 1$. The elastic unitarity condition states that δ is equal to the *s*-wave $K\pi$ phase shift for *s'* below the inelastic thresholds in the $K\pi$ *s*-wave system. To the extent that the semileptonic $|\Delta I| = \frac{1}{2}$ rule is correct, the phase shift must be for the isospin- $\frac{1}{2}$ channel. It has been assumed implicitly that the lepton current is local, and that there are no large time-reversalnonconserving phases in f_{\pm} . The only low-lying inelastic two-body threshold in the *s*-wave $K\pi$ system is that for K_{η} at 1043 MeV, and it is reasonable to suppose that the elastic unitarity condition is good for masses below this. (b) The second consideration concerns the experimental evaluation of $(\partial D/\partial s)_{S=0}$. By using only measurements of the $K_{\mu3}/K_{e3}$ relative branching ratio R, this evaluation can be made almost completely independent of the value of λ_{+} and therefore of the *p*-wave $K\pi$ interaction. In order to calculate ξ from an experimental measurement of R it is necessary to assume μ -e universality and a value for λ_{+} . The dependence of ξ on $\lambda_{-} = [f_{-}(0)]^{-1}m_{\pi}^{2}(\partial f_{-}/\partial s)_{s=0}$ is considerably less important⁸ and for present purposes we set $\lambda_{-} = 0$. From the relation⁹ between R, ξ , and λ_{\pm} ,

$$\partial \xi / \partial \lambda_{\perp} \approx -11$$
,

the error in $(\partial D/\partial s)_{s=0}$ caused by $\delta \lambda_{+}$ is

$$(12.4 + \partial \xi / \partial \lambda_{+}) \delta \lambda_{+} \approx 0.01$$

for $\xi \approx 0$, and the present¹⁰ best value $\lambda_{+} = 0.023 \pm 0.008$. This is an order of magnitude less than the error caused by the experimental error in R.¹¹ The existing determinations of $\xi^{5,12-17}$ through measurement of the $K_{\mu}3/K_{e3}$ relative branching ratio have been averaged to give a best value of $\xi = 0.00 \pm 0.10$ for $\lambda_{-} = 0$ and λ_{+} = 0.023. We find a_{χ}^2 of 4.7 for six degrees of freedom. The experimental estimate of $(\partial D/\partial s)_{s=0}$ is, therefore, 0.285 ± 0.10 . The integral in Eq. (6) has been evaluated for

$$\tan\delta(s) = \frac{K}{K+m_{\pi}} \frac{m_{r}\Gamma}{m_{r}^{2}-s}$$

representing a single resonance of mass m_r and width Γ . The first factor, in which K is the c.m. momentum, gives δ the correct behavior at threshold. The calculated $(\partial D/\partial s)_{s=0}$ was fitted to the experimental estimate and the values of χ^2 , for one degree of freedom, are shown in Fig. 1 as a function of m_{γ} and Γ . The effect of a nonresonant background for $s > m_r^2 (s < m_r^2)$ would be to move the minimum in χ^2 to lower (higher) values of m_{γ} . For the hypothesis that there is no swave $K\pi$ interaction, we find $\chi^2 = 8.1$ for one degree of freedom. The value $\xi = -1.0 \pm 0.3$ which has been determined¹⁸ from measurements of the μ polarization in $K_{\mu3}^+$ decay leads to the experimental estimate $(\partial D/\partial s)_{s=0} = -0.71 \pm 0.32$. This measurement of ξ is independent of $\mu - e$ universality but appears to be inconsistent with the principles adopted in this work unless the swave phase shift is large and negative over a wide interval of s'.

We conclude that the present experimental

FIG. 1. The experimental evaluation of $(\partial D/\partial s)_{s=0}$ is compared with values calculated for an s-wave $K\pi$ resonance of mass m_{γ} and width Γ . The values of χ^2 are for one degree of freedom.

measurements of the $K_{\mu3}/K_{e3}$ relative branching ratio favor a nonzero $K\pi$ interaction. The data favor a resonant state in the 750- to 1200-MeV mass interval. It is not possible to estimate the width, which could be so large that the state would not be seen in $K\pi$ invariant-mass distributions in strong production processes. In the quark model, this state could be a member of a ${}^{3}P_{0}$ nonet.¹⁹

We wish to thank the Directorate and Staff of the Rutherford Laboratory for their support.

¹S. W. MacDowell, Phys. Rev. <u>116</u>, 1047 (1959).

²J. Bernstein and S. Weinberg, Phys. Rev. Letters 5, 481 (1960).

³H. Chew, Phys. Rev. Letters <u>8</u>, 297 (1962).

⁴T. Das, Phys. Rev. Letters <u>17</u>, 671 (1966).

⁵D. R. Botterill, R. M. Brown, A. B. Clegg, I. F. Corbett, G. Culligan, J. Mcl. Emmerson, R. C. Field, J. Garvey, P. B. Jones, N. Middlemas, D. Newton, T. W. Quirk, G. L. Salmon, P. Steinberg, and W. S. C. Williams, Rutherford High Energy Laboratory Report No. RPP/H/37 (unpublished) ($\xi = -0.08 \pm 0.13$, for $\lambda_{-} = 0$, $\lambda_{+} = 0.023$).

⁶See, for example, J. D. Jackson, in <u>Dispersion Re-</u> <u>lations</u> edited by G. R. Screaton (Oliver and Boyd, Edinburgh, Scotland, 1961).

⁷It is assumed that there are no Castillejo-Dalitz-Dyson zeros in D(s). ⁸From Eq. (5),

$$\xi \lambda_{-} = \frac{1}{2}m_{\pi}^{2}(m_{K}^{2} - m_{\pi}^{2}) \left(\frac{\partial^{2} e^{u}}{\partial s^{2}} - \frac{1}{f_{+}(0)} \frac{\partial^{2} f_{+}}{\partial s^{2}}\right)_{s=0}$$

If D(s) and f_+ have poles at $s = m_{\gamma}^2$ and m_{π}^2/λ_+ , respectively,

$$\xi\lambda_{-} \approx \langle m_{K}^{2} - m_{\pi}^{2} \rangle \left(\frac{m_{\pi}^{2}}{m_{f}^{4}} - \frac{\lambda_{+}^{2}}{m_{\pi}^{2}} \right) \lesssim 0.01.$$

The condition $\lambda_{-}=0$ leads to an error $\delta \xi \approx +4\xi \lambda_{-}$. ⁹The $K_{\mu3}/K_{e3}$ ratio is $R=0.646+0.48\xi \lambda_{-}+1.40\lambda_{+}$ + 0.127 ξ + 0.019 ξ^2 .

¹⁰W. J. Willis, in <u>Proceedings of the International</u> <u>Conference on Elementary Particles, Heidelberg, Germany, 1967</u>, edited by H. Filthuth (North-Holland Publishing Company, Amsterdam, The Netherlands, 1968). ¹¹Similar results are obtained for experimental determinations of ξ from an incomplete spectrum of lepton momenta [Ref. 5; L. B. Auerbach, J. M. Dobbs, A. K. Mann, W. K. McFarlane, D. H. White, R. Cester, P. R. Eschstruth, G. K. O'Neill, and D. Yount, Phys. Rev. <u>155</u>, 1505 (1967) ($\xi = 0.75 \pm 0.5$ for $\lambda_{\pm} = 0$); R. Garland, K. Tsipis, S. Devons, J. Rosen, D. Tycko, L. G. Pondrom, and S. L. Meyer, Phys. Rev. <u>167</u>, 1225 (1968) ($R = 0.80 \pm 0.10$)].

¹²F. S. Shaklee, G. L. Jensen, B. P. Roe, and D. Sinclair, Phys. Rev. <u>136</u>, B1423 (1964) ($\xi = -0.17 \stackrel{+0.75}{_{-0.99}}$ for $\lambda_{\pm} = 0$).

 $\lambda_{\pm} = 0$). ¹³V. Bisi, G. Borreani, A. Marzari-Chiesa, G. Rinaudo, M. Vigone, and A. E. Werbrouck, Phys. Rev. <u>139</u>, B1068 (1965). (The $K_{\mu3}$ branching ratio of 3.45 $\pm 0.2\%$ and a K_{e3} branching ratio of $4.94 \pm 0.11\%$ lead to $R = 0.70 \pm 0.044$.)

¹⁴A. C. Callahan, U. Camerini, R. D. Hantman, R. H. March, D. L. Murphree, G. Gidal, G. E. Kalmus, W. M. Powell, C. L. Sandler, R. T. Pu, S. Natali, and M. Villani, Phys. Rev. <u>150</u>, 1153 (1966) ($R = 0.703 \pm 0.056$).

¹⁵Auerbach et al., Ref. 11.

¹⁶Garland et al., Ref. 11.

¹⁷Aachen-Bari-CERN-Padova-Valencia-Madrid Collaboration, χ^2 investigation reported at the Princeton Conference on the Weak Interactions of K Mesons, 1967 (unpublished) ($R = 0.65 \pm 0.05$).

¹⁸Aachen-Bari-Bergin-CERN-École Polytechnique-Nijmegen-Orsay-Padova-Turin Collaboration, χ^2 Investigation, to be published (private communication from Dr. D. C. Cundy).

¹⁹R. H. Dalitz, in <u>Proceedings of the Thirteenth In-</u> ternational Conference on High Energy Physics, Berkeley, 1966 (University of California Press, Berkeley, California, 1967).

^{*}Now at the Lawrence Radiation Laboratory, University of California, Berkeley, California.