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part of the trace of ¢, be negligible, and it is not unreasonable to infer that this is true for the tensor as a whole.
83. D. Bjorken and J. D. Walecka, Ann. Phys. (N.Y.) 38, 35 (1966).
%We use the multipole analysis of F. A. Berends, A. Donnachie, and D. L. Weaver, Nucl. Phys. B4, 54 (1968).
1, 3. Gilman and H. J. Schnitzer, Phys. Rev. 150, 1362 (1966).

CRUCIAL TEST OF A THEORY OF CURRENTS*

C. G. Callan, Jr.,t and David J. Grossi
Lyman Laboratory, Harvard University, Cambridge, Massachusetts

(Received 4 June 1968)

We discuss interpretation and possible crucial tests of a theory in which the energy-
momentum tensor is written in terms of currents.

In the preceeding Letter one of us (DG) has de-
scribed a way of extracting testable consequenc-
es from a theory which expresses the energy-
momentum tensor in terms of currents.! Here
we shall discuss in some detail the basic ideas
of this program and propose a crucial test of its
relevance to the real world.

The fundamental feature of this theory is that
the energy-momentum tensor of hadrons is writ-
ten directly in terms of currents having algebra-
of-fields commutation relations. Although the
reasons for doing this are clear enough, the in-
terpretation of the resulting theory perhaps is
not. One possiblility is that we are dealing with
a canonical field theory in disguise. Examples
of equivalent field theories have actually been
given,? but they have the common defect of de-
scribing only bosons. To date, no one has been
able to construct an equivalent field theory in-
volving fermions, and one might even guess that
it is impossible. Therefore, this interpretation
is probably of no use if we wish to describe the
real world.

A speculative way of getting around this prob-
lem is to regard 0,y as a way of selecting ac-
ceptable representations of the local current al-
gebra. Given a set of current operators having
the correct algebra, the energy-momentum ten-
sor constructed according to Sugawara’s pre-
scription is guaranteed to have the commutation
relations with itself demanded by Lorentz invari-
ance. Much more is required, however, if the
theory is to make physical sense: The physical
states must be eigenstates of Py =[d%X6 oy and
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must transform correctly under the action of the
supposed Lorentz generators My =/ dx(x, 6,0
-x0,,0). Most representations of the current al-
gebra will not have this property,® but those that
do (if any exist) would appear to give a reason-
able physical theory. Since, from this algebraic
point of view, there is no apparent difference be-
tween bosons and fermions, it seems not impos-
sible that solutions involving fermions can be
found. They may well not be equivalent to a field
theory, but that is acceptable so long as the the-
ory makes physical sense.

In spite of its unconventional nature, this theo-
ry has much to recommend it. It relates the
strong, electromagnetic, and weak interactions
of hadrons in an appealing way, does not single
out any particles as being fundamental, and the
Hamiltonian cannot be sepeated into free and in-
teracting parts. In fact, the theory, if consis-
tent, is a rather well defined way of carrying out
the bootstrap program.

These remarks of course say nothing about
how to find a solution. Before attempting that
massive task, though, we should look for a sim-
ple crucial test whose failure would tell us that
the real world is not described by a theory of
this kind. Such a test actually follows from the
requirement (p|6,,,1p) =p, py/m, where 1p) is a
nucleon state of momentum p, and m is the nu-
cleon mass. This embodies part of the informa-
tion contained in the identification of [d¥ 6,
with the momentum operator.

We make use of the equation (see preceding
Letter)

o), +14.0),4,° 0} Jotr), o)

where both J’s are either vector or axial-vector currents and Juy=9uJy-9,J,. Taking nucleon ma-
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trix elements of this equation and using isospin invariance, we can then show that
o(x )a(p![J K+(x> 7K O116)+ 86 ) $BIT_ (), T ON Y + (0~ m)= -3 /)8 p 1, A1V 4, 7.7
0 S 07 0i Y @i
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14,7, A7) = - @i/m)stlp,p;+ 20, ], (2)
where J7 is the electromagnetic current, JK* is the total strangeness-changing weak current, and the
last equality follows from the explicit form of Sugawara’s Ouv (see preceding Letter).

Following Bjorken,* we observe that if

a,b 4 iq-x a b
[ ’ ]=%fd xe 9 <p'T(JU. (x)JV (0))|p)+(a-——b),

1%
(here and henceforth, the removal of vacuum expectation values from time-ordered products is as-

®3)

sumed) then
S TR CI AR A
lgql— oo %o ’

1 4 igq b
-5 Jd xe'd "o(xoxm[JOi“(x),Jj O)15).

T..
Y

The explicit form of the algebra-of-fields current commutators has been used to eliminate the g, !

term and replace J; by Jg;.
Following Eq. (2), we then get
. 2 K~ .
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g*~ - ] L) ] )
where an obvious notation has been used.
The quantities T, define invariant amplitudes as follows:

T =A D .
W(p,q) puPV+Bq“qU+C(p”qVPun)+ 2y
We really have, therefore, a condition on the asymptotic behavior of A:
K-
lim (—qoz)[%Ay’p I (p=~n)=-3i/m.
gyl =

Regge-pole arguments suggest that A satisfies an unsubtracted dispersion relation in v=p-¢ for fixed
q?, so that if a is the discontinuity of A, we have
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The a’s are in turn related to weak and electroproduction cross sections as follows:
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where the cross sections are for the familiar
type of reaction in which a lepton is incident on

a nucleon target and only the final lepton momen-
tum is measured. We therefore have a sum rule
for measurable quantities which follows directly,
with no assumptions, from the basic equations of
the theory.

All of the elements of this sum rule are mea-
surable, although it will be some time before the
weak-production data are available. In the mean-
time, one should note that the electroproduction
data alone must satisfy

lim (—qz)

q* =~ —ce

Xf]:%z[apy(qz, V)+an7(t12, V) <2;".

If this is violated, one has proof positive that
this theory does not apply to the real world.

Another way of getting a more accessible sum
rule is to use SU(3) symmetry to eliminate un-
desirable cross sections. Since the amplitude of
Eq. (3) is determined by four SU(3) invariants,
one requires only four independent pieces of ex-
perimental information to determine it. The ob-
vious thing to do is to eliminate a,#  in favor of
a,K*, a,™, anda n - Better yet, if the 27 con-
tribution to T Wab i neglected, as is suggested
by the properties of the nonleptonic weak Hamil-
tonian, one can eliminate ap’"K entirely. The
resulting sum rule is
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This is easier to evaluate than the original sum
rule, but less decisive because of the assump-
tions going into it.

We have so far exploited only a minute fraction
of the information implied by a correct physical
interpretation of P, and M ;. One might, for
example, try to obtain a condition from the iden-
tification of M;; with the angular-momentum op-
erator. The trouble is that if we use the meth-
ods described here we learn something about an
asymptotic limit of virtual nonforward Compton
scattering. One can write a dispersion relation
for this in terms of measurable quantities but
they are no longer just cross sections, but much
more complicated objects which are extremely
hard to measure. The same problem arises in
every other case we can think of, and poses the
challenge of finding other ways of extracting test-
able conditions from this theory.

Even if the sum rule works, that does not
prove the theory right since there are so many
other constraints which must be satisfied. One
would, however, feel a very strong encourage-
ment to begin work on the larger problem of
solving this very interesting theory.
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