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We have calculated the transport properties of a Fermi liquid by solving certain inte-
gral equations originally derived by Abrikosov and Khalatnikov. Their result for the
thermal conductivity is found to be a factor of 2 too large, and the numerical agreement
between theory and experiment is improved by applying this correction. The expres-
sions for the viscosity and diffusion coefficients are also reduced from those previously
accepted, but by less than 25%.

We present here a calculation of the transport
properties of a Fermi liquid, based upon the
derivations of Abrikosov and Khalatnikov' (vis-
cosity and thermal conductivity) and of Hone'

(diffusion). These authors obtained expressions
for the transport coefficients in terms of the so-
lutions to certain integral equations and found
approximate solutions. By solving the integral
equations exactly, we find that the expression
for the thermal conductivity given by Abrikosov
and Khalatnikov should be reduced by a factor of
about 0.5; the conventional expressions for vis-
cosity and diffusion are also reduced, but the
changes are relatively small. The corrected
equations are used to obtain calculated values of
the transport coefficients of liquid He, and the
agreement with experiment is found to be im-
proved. The present calculation applies to the
low-temperature regime and takes no account of
finite temperature phenomena, or of spin fluctu-
ations (paramagnons).

We use the notation of Ref. 1 as far as possi-
ble. The thermal conductivity is determined by
finding a quantity q(t) =qs(t) +qe(t), where qs is
an even function of t and qa is an odd function.
Here t = (e-p)/k T, and e is the quasiparticle en-
ergy, while p is the Fermi energy; q(t) is a
measure of the departure of the distribution func-
tion from its equilibrium form. The equations
giving qs(t) and q~(t) are

/ dxK(t, x)[q (t)-q (x)]= -As/k,

K(t, x) = (e + 1) (x-t)

(e +1) (e -1)

—,'(w'+t')Q (t)-~ f"„dxg(t x)Q (x)-

where

=At sech&t, (4)

g(t-x) = —,(t-x) csch[-,'(t-x)].

Taking the Fourier transforms of these equa-
tions, we have

d 4 /dkw+ w~(2 sechw(wk)-l]4 =0,

d'4 /dk'+ w'(2A sech'(wk) -1]4
a K a

4w iA sinh-(wk) sech'(wk),

dQ e(8, q) dQ &u(8, p) 1+2cos8 .
2w cos28 2w cos28

Equations (1) and (2) are equivalent to (8.4) and
(8.5) of Ref. l.

We multiply Eq. (1) by dna/dt, where no(t) = (et
+ 1), and integrate over t. The quantity K(t,
x)dn, /dt is symmetric under interchange of t and
x, while [qs(t)-qs(x)] is antisymmetric; so the
result is zero Then s,. which is defined as -Vp/
VT, is also zero (more precisely, s is of order
T) By def. ining Q(t) =q(t) sech-,'t, Eqs. (1) and (2)
are transformed into

-,'(w'+ t )Q (t)-f dxg(t-x)Q (x) =0,

—,'(w2+ t )q (t)-X f dxK(t, x)q (x) =At,

where

[
dQ &u(8, q)

m*3' T2 2w cos ~ ~

(2)
where 4 (k), 4 (k) are the transforms of Q

Q~, respectively.
It is convenient to consider first the homoge-

neous equation

C "+w'[2A sech'(wk) -1]4= 0.
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Th's is similar to the Schrodinger equation for a
particle in a sech'-type potential well and may be
solved by the methods of Landau and Lifshitz. '
Eigenvalues Ans = (n+ 1)(2n+ 1) (where n = 0, 1, 2,
~ ~ ~ ) are found to accompany even eigenfunctions

4 (k) = sech(wk)F[~, n+ —,', 2; sech'(wk)],

while eigenvalues Qa =(n+ 1)(2n+3) accompany
odd eigenfunctions

4 (k)
na

= sinh(wk) sech (wk)F[-n, n+ —,', 2; sechw(wk) ].

The hypergeometric functions occurring here
are Jacobi polynomials.

The odd eigenfunctions are now used to expand
the solution of Eq. (6), and give

A.
K can only lie in the range -1 &~K &3; so the de-

nominator is never zero. Equation (5) used with
the even eigenfunctions gives the simple result

4 (k) =const4 (k).
S Os

The value of the constant is determined, as ex-
plained in Ref. 1, from the condition that there
should be no mass flow:

BP Be dt

From this we readily find that qs(t) is of order T
smaller than qa(t).

The thermal conductivity is given by

BP BE

4 (k)=to 4 (k).
a (n+ l)(2n+ 3) -A nan=o K

(6)
The contribution to this from qs(t) is smaller
than that from qa(t) by a factor of order T2; so

[ qs(t) [and therefore 4's(k)] can be ignored. Then

dn, (t)
dt a

where

kT Be„2 Bv im ~
dk sinh(wk) sech'(wk)4 (k),

BP BE 4J a
E =P

8 w'k'p, '
[dQ &u(8, q)

(3 m T J 2w cos —'8

(3-X ) ~ (4n+ 5)
H(X )=

Ic 4 ) (n+1)(2n+3)[(n+1)(2n+3)-& ]n=O K

Equation (9) is the result quoted in Ref. 1, multiplied by a correction factor H(X ). A numerical
evaluation of H(X~) shows that whatever assumption is made about ~(8, y), we have -1 &X~ &3 and

|'2 =0.417 &H(X ) &0.561.
K

Thus the previously accepted expression for the thermal conductivity should be multiplied by a factor
of about 0.5.

An approach similar to the above can be applied to the calculation of the viscosity coefficient, and
to diffusion. For viscosity we find

(1-cos8)' sin'q C(X )
64 8 p, ' dQ v(8, p)

7l

which is the conventional result multiplied by a correction C(A&), given by

(1-X) - (4n + 3)
4 (n+1)(2n+1)[(n+1)(2n+1)-A]'
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Table I. Comparison of theory with experiment (after Wheatley ).

pressure
(atm)

(DT') -'
(106 sec/cm 'K )

Expt Theory

(~ T)
{10 sec cm/erg)
Expt Theory

(nT')-'
(10 cm /dyn sec K )

Expt Theory

0.28
27.0

0.7
6

0.2
2

0.5 0.4
1.2

aJ. C. Wheatley, Phys. Rev. 165, 304 (1968).

where A is defined by

"dQ ~(8, q) )dQ &u(8, q)!.
2F cos2t9 271 cosy~

Any scattering function v(8, y) can yield values of Xrl only in the range -2 &A& &1, from which the ex-
treme numerical values of C(X&) are found to be 0.750 and 0.925. For diffusion, the expression ob-
tained is

t32 m'O'P '
I

"dQ 2~ (8, y)
D = — (1+ —,Z )

t
—,(1-cos8)(1-cosy) ( C(A ),

3 m*'k'7' ' 0 ~, 4m cos&8 D'

where C(A) is the function defined by (11), but AD is now defined by

~dQ &u(8, q) ~dQ v (8, q)
(X -1) —,= — —,(1-cos8)(1—cosy).

4~ cos2t9 . 4~ cosy~

The scattering functions ~, ~D can be expressed
in terms of the antiparallel and parallel spin-
scattering functions'.

2~(8, q) =~«(8, V)+-'~»(8, V),

and

2~D(8, v) = ~&&(8, v).

AD is bounded by -3 and 1 (although the lower
bound may not be attained), so that

0.750 &C(A ) &0.964.

The correction factors C(A&) and C(XD) are only
a little less than 1, and so the changes they make
to the viscosity and diffusion coefficients are
perhaps not very important.

Using the expressions derived above, we have
corrected the theoretical values of the transport
coefficients of liquid 'He. In the usual way, ' we
replace ~ty(8, p) and &uyy(8, p) by their values
in the forward direction (p =0), which are then
approximated by the first few terms of their I e-
gendre function expansions in 6). The results for
the parameters given by Wheatley' are shown in
Table I. It may be seen that the viscosity and
thermal conductivity are in good agreement with
experiment, whereas the diffusion coefficient is

!
too large by a factor of about 3. The correction
factor C(XD) for the latter case is close to 1,
and has done little to help. The relatively large
discrepancy in the calculated value of the diffu-
sion coefficient may perhaps be due to the very
approximate evaluation of the angular averages.

Finally, we note that the methods developed
here can also be used to derive the relaxation
time which is used by Abrikosov and Khalatnikov
in calculating the dispersion of sound. Details of
this work will be given in a separate publication.
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ELECTRONIC PROPERTIES OF LIQUID WATER IN THE VACUUM ULTRAVIOLET*
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Reflectance of liquid water has been measured between 1050 and 3000 ~ by two meth-
ods, one with the water in an open dish in equilibrium with its vapor and one with a
CaF2 or quartz cell. Real and imaginary parts of the index of refraction and dielectric
constant, deduced from the data and Fresnel's equations, suggest an exciton transition
at 8.3 eV, an interband transition at 9.6 eV, and a band gap of 9 eV.

The importance of the study of the interaction
of radiation with water has been pointed out by
Platzman: Liquid water is perhaps the most im-
portant inorganic chemical substance and cer-
tainly the fundamental biological material.
Therefore, the study of the passage of electro-
magnetic radiation through water is of critical
importance to biology. The measurement of the
optical properties of water gives information al-
so about the interaction of charged particles with
water since these two processes are related.
Previous measurements of the optical properties
of water have only extended down to 1700 A be-
cause of formidable experimental difficulties in
the short wavelength region of the spectrum.

%'e have obtained the real and imaginary parts
of the complex index of refraction of water, 8
= n + ik, in the spectral region 1050-3000 A.

In order to determine the optical properties of
water in the vacuum ultraviolet two general meth-
ods were used. In the first the reflectance of
water in equilibrium with its vapor at 1 C was
measured in the spectral region 1050-3000 A for
three angles of incidence. Light from a Seya-
Namioka monochromator was reflected from a
gold mirror onto either the water surface or a
gold reference surface at the various angles and
reflected specularly onto a coronene-coated pho-
tomultiplier. The optical constants were then
obtained from a solution of Fresnel's equations.
This method gave reliable values of n, but the
ref lectances measured in this way were not ac-
curate enough to give good values of k. These
values of n are labeled "free surface" in Fig. 1.

The second method involved placing water
against the plane surface of a transparent semi-
cylinder which formed one side of a sealed cell.
Light is incident normally on the curved surface,
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FIG. 1. Optical constants n and k of liquid water.

reflects from the water-semicylinder interface,
and exits, again normally. A quartz semicylin-
der was used down to 1680 A, where it becomes
opaque, and a CaF, semicylinder from 1680 down
to 1250 A. The reflectance was measured as a
function of angle of incidence for angles between
13' and 87', using an angle-doubling scanning de-
vice. ' From 1250 to 1720 A the optical constants
n and k were determined from a least-squares fit
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