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Note that the Goldstone fields Q are nonzero only
when T p &0, i.e., when the symmetry corresponding
to P' is spontaneously broken. For symmetries
which remain intact in dynamics, we have (Ref. 5)
T q=0, and there are no Goldstone fields.

When some components of the symmetry remain un-
broken, the mass matrix M is singular (Ref.5). In this
case only its nonsingular part is to be considered.
From here it is clear that only currents of broken
symmetries will give the corresponding vector-meson
poles. This explains why we do not have, for example,
the photon pole in the matrix elements of the electro-
magnetic current.
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Finite-width corrections based on a generalized effective range formula for pion-pion
scattering modify by a non-negligible amount the well-known relation between I'(p e+e )
and I'(p- 7tn. ) derived on the basis of vector-meson dominance. We also present a new
current-algebra prediction for the shape and magnitude of 0(e e —7|+7|. ) and estimate
the p-meson contribution to the Schwinger term.

It was pointed out more than six years ago'
that the hypothesis of vector-meson dominance
can be used to compute the lepton-pair decay
rate of a neutral vector meson in terms of the
vector-meson coupling constant appearing in
strong interactions, in much the same way as the
hypothesis of partially conserved axial-vector
current relates the pion decay constant to the pi-
on-nucleon coupling constant. If we call the cou-
pling constant at the y-p junction emp'/fp, the
complete p dominance of the electromagnetic
form factor of 7t implies

We therefore focus our attention on the electro-
magnetic form factor of the pion Ew(s), which is
related to the colliding-beam cross section via

&x(e+e —w+w )

wo. ' (s-4m ')'"
5/2 IF (s) I'. (4)

lepton-pair branching ratio R as well as the p-
meson width is to rely on the colliding beam re-
action

+ — +ee -mm

or equivalently,

I'(p e+e ) o.'-t'm '-4m ' '" m

I'(p-ww) 36 ( m ' I'
p p

In deriving the above relation, however, we have
assumed that the p meson is essentially stable.
In this note we demonstrate how Eq. (2) must be
modified when we take the finite p width into ac-
count. We also discuss the current (field) alge-
bra predictions on I'(p- ww), v(e+e —w+w ), and
the magnitude of the Schwinger term.

Experimentally the cleanest way to obtain the

Our starting assumption is that for a wide energy
range (s &I BeV ) the P-wave pion-pion scatter-
ing phase shift 5, satisfies a generalized effec-
tive-range formula of the Chew-Mandelstam
type2:

(k'/v's) cot5, =k'k(s) + a+ bk',

where

k =(-,'s-m ')"'
'tr

2 k (Es 2k)
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Once 6, is given, we can write down Fw(s) with

the correct phase and singularities3:

F (s) =f(0)/f(s)
with4

f(s) = -i(k'/v's) + (k'/vs) cot5, .

so that Fw(s) is purely real as it must be.
We now define the p mass m& and the p width

I"p by

cot~ 2 =0,
1 s =mp2

It is implied that for 0 &s &4m„' we make the re-
placements

k —i(m '--,'s)"'
d5x 1ds, m I''

s=pRP p p

(io)

(/s+ m), (, )
i

With these definitions our form factor (7) can be
rewritten as follows'.

m 2+drn I'
F (s)=-

w (m '-s)+ I' (m '/k '){k'[h(s)-h(m ')]+k 'h'(m )(m '-s)]-im I' (k/k )'(m /vs) '
P P P P P P 0 P P P P P

Near the p mass we can ignore the middle term
in the denominator of (11) since it goes as (mp'
-s), and Eq. (11) is reduced to the familiar res-
onance formula

F (s)
n near s = mp'

m '[I+d(r /m )]
P P P

m w-s-im I" (k/k )w(m /vs)'
P P P P P

It is very important to note that even though our
Fw(s) is correctly normalized at s =0, the nu-
merator of (13) is not just mpw. Numerically we
have d =0.48 for mp =775 MeV.

To appreciate the significance of our result let
us note that the lepton-pair branching ratio A can
be defined in the most unambiguous manner by
the formula

o(e+e -w+w )', =3w(2/m )'R.
s = pplp P

Combining (4), (11), and (14), we get

R
finte width

(i4)

p

which is to be compared with the narrow-width

where d is a. constant that depends on the p mass:

3m' (m +2k l results (2). Although the two expressions agree
in the limit I"p «mp, for a realistic value of the

p width they differ by as much as 15%. This is
illustrated in Fig. 1. The published data of the
Novosibirsk' and Orsay' colliding-beam experi-
ments are also shown.

Recently Brown and Goble' have proposed that
the P -wave pion-pion phase shift be obtained by
matching the effective-range formula. (5) to the
current-algebra prediction on pion-pion scatter-
ing near threshold. ' Their procedure leads to"~"

u'
I' =,

w
[1-k 'h'(m ')/3wc ']

p 3mc m p p
7F p

=130 MeV,

which gives rise to

R = 5.0 x10-'.
current algebra

These predictions correspond to the triangular
point on Fig. 1.

Using the current-algebra phase shift, we can
also predict the s dependence of IFw(s) I' (or
equivalently the colliding-beam cross section) as
shown in Fig. 2. We emphasize that the theoreti-
cal curve has no adjustable parameter once the p
mass is given. The peak cross section obtained
in the Novosibirsk experiment is in excellent
agreement with our prediction, but the width ob-
served is considerably narrower. It is worth
mentioning that, when our theoretical curve is
plotted versus vs, the full width at half-maximum
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FIG. 1. The dependence of the lepton-pair branching
ratio on the p-meson width. The full line is based on
Eq. (15) which takes into account the finite p width.
The broken line is obtained when we treat the p meson
as a stable particle. The experimental results of the
Novosibirsk and Orsay groups are indicated. The tri-
angular point represents the current-algebra predic-
tion.
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FIG. 2. Theoretically predicted I
I' (s) P based on

current algebra and the effective-range expansion.
The theoretical curve has no adjustable parameter
once the p mass is given (mp =775 MeV).

is 118 MeV even though the curve itself is based
on I'& =130 MeV in the sense of Eqs. (10) and

(13). This serves to remind us once again that
commonly quoted values of the p width often de-
pend on the particular manners in which the ex-
perimental data are parametrized. Another in-
teresting feature of the theoretical curve is that
the actual peak of IF~(s) 12 is not at m&

= 775 MeV
but is shifted towards the left by about 14 MeV.

The lepton-pair decay of the p meson is of the-
oretical interest also in connection with the brok-
en SU(3) prediction'2

S p
-'m I'(p-e+e )

=m I'((p-e+e )+m I'((u-e+e ),
(d

derived by saturating the first spectral-function
sum rule of Weinberg' by p, m, and p in the nar-
row-width approximation. We can discuss finite-
width corrections to the left-hand side of (18),
but the cleanest way to proceed is to express the
spectral-function sum rule itself in terms of the
physically observable colliding-beam cross sec-
tion as follows':

ger term if the Schwinger term is not a c num-
ber) via"~"

1
C

+
33 16m'a* 4m&' tot' '

- T = 1 system)ds,

where c~p is normalized so that

(20)

c» =0.021 BeV . (22)

In the gauge-field algebra" c~p is a finite con-
stant given by

=if j (x)5 (i-I')3
spy k

ic s -5 (x-x').(3)
aP k

If we assume that the p-meson contribution satu-
rates the integral (20), we can evaluate the
Schwinger term by integrating our theoretical ex-
pression for &x(e+e -v+n ) based on current al-
gebra. The result is

'f, sa-(e+e —T = 1 system)ds4m~~ tot c =(m lf )25
&P p p ~p (23)

= f 2sv (e+e —T =0 system)ds. (19)
tot

We recall that the above cross-section integral
is related to the magnitude of the Schwinger term
(or the vacuum expectation value of the Schwin-

We thus obtain" ~"

f 'l4~=2 3.
p

(24)

We may recall that in sharp contrast to the
gauge-field-algebra prediction (23), the integral
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(20) is expected to diverge linearly in the quark-
field model. The asymptotic form of the collid-
ing-beam cross section is therefore of fundamen-
tal importance in our theoretical understanding
of the hadronic current appearing in the electro-
magnetic interactions.
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