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relatively low powers in plasmas where colli-
sions are rare. It is likely that this effect may
occur at even lower power levels in low-pres-
sure afterglow plasmas where both T and v can
be smaller than for the present experiment.
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The self-trapping and the modulational instability of nonlinear hydromagnetic n
waves of right-hand polarization in a cold plasma are discussed on the basis of a non-
linear dispersive equation, which enables us to directly apply the results obtained in
the nonlinear optics.

The present paper deals with a long-time,
asymptotic behavior of a hydromagnetic wave of
small but finite amplitude propagating along an
applied magnetic field in a quasineutral, cold
plasma. The original equations of motion for
the plasma will be reduced approximately to a
dispersive nonlinear equation (the nonlinear
Schrodinger equation) which takes the same form
as that of the equation appearing in the self-trap-
ping problem in nonlinear optics. '~' We shall
thereby show marked physical effects such as
the modulational instability already found in that
problem.

Neglecting displacement current and assuming
the charge neutrality in the first Maxwell equa-
tion gives the electron flow velocity in terms of
the magnetic field and ion quantities. Then elim-
inating the electric field by means of the equa-
tions for the electron fluid, we can derive the
following system of equations for the ion fluid
and the transverse magnetic field':
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in which n is the density; u, v, and w are the x,
y, and z components of the flow velocity, re-
spectively; BY and Bz are the components of the
transverse magnetic field, while the constant ap-
plied magnetic field is oriented in the positive x
direction. R~ is the electron cyclotron frequen-
cy associated with the applied field divided by a
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characteristic frequency 0, and R~ is likewisely
defined for the ion. All quantities are dimension-
less, being normalized in terms of the applied
field strength B, the density at infinity N, the
Alfven velocity B/(4xmN)"' (m is the ion mass
plus the electron mass), and the characteristic
frequency O.

For plane disturbances without a density change
and an x component of flow velocity, 'Uk' and (8"
-expi(kx-~t), Eqs. (3) and (4) lead to the disper-
sion relation '

for E',

(W-+OSO)g, '+ikoWg, = 0;

for ~,
(12)
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+ik, WP, +ik, I'g, = 0, (13)

where the prime denotes the differentiation with
respect to (, I is the unit matrix, and the ma-
trices ~, ~„and I take the forms

(&u/k)'=R 'R '(R -u)(R + co).
e i e i (7)

However, superpositions of these nonlinear
plane waves are not solutions; hence, for waves
to transmit signals we may assume, for 'U* and
Sk', the form (t((x, t) exp[i(kx-&ut)], modulated by a
slowly varying function p. In addition, we re-
quire that the solutions include steady pulsive
waves growing spatially at infinity, the condition
for which may be obtained as follows: Putting
&u = Uk to solve Eq. (7) for k yields that k becomes
complex if I U I exceeds the critical value UQ
= (Rs+R;)/2(RsR;)"' which is equal to the criti-
cal velocity of the solitary wave. ~ This condition
implies that the phase velocity is equal to the
group velocity, i.e., s(d/sk= (d/k(=+U, ), and we
have the critical frequency and wave number,
~0 = k(Re Ri) -and Ik, I

= U, —'&u„respectively.
In the subsequent discussions we consider a
wave of small but finite amplitude propagating
with a velocity nearly equal to the critical veloci-
ty. Hence, we may assume that k is positive and
that the wave has right-hand polarization. '

We first introduce the scale transform in
terms of a slowness parameter & through the
equations

$ = e(x Ut), r= t,e— (8)

where U differs from Up by a small number & ~,
e.g. , U= U, + &'~, and assume the following ex-
pansions in ~:

m
(k, |))exp(ik (/r(

m=1

and

u=E u+''' 5=1+&4+ (10)

Then Eqs. (1) and (2) imply that n and u are slow-
ly varying functions. Substituting Eqs. (8}-(10)
in Eqs. (3) and (4) and equating the coefficients
of each power of & equal to zero yields for &',
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From Eq. (11) we have the condition IWI =0
which is satisfied by Eq. (7). Then g, may be
represented as ()(,= p, ($, r)r by a function p, and

a column vector r satisfying ~'r=0, say,

e 0 0 0
((-1+R 'U k )/U

Then multiplying Eq. (12) by l from left, we find
easily that the compatibility condition lSor = 0 is
satisfied by the assumed values of Up and &p In
other words, this condition selects p and &p

among and k satisfying the dispersion relation.
We thus obtain ()i, = p, ($, r)r+icp, '($, r)s, in which

p, is a function of $ and & and s is the column
vector,

(-ii

By means of the compatibility condition, multi-
plying Eq. (13) by l from the left results in

. By, ki'+—'-{2(u-A.)-U n)(t(
B7 2 0 1

+~R ~R &p "=
Q

(d

2 e l 1

Since I S'1=0, a compatibility condition must be
satisfied so that Eq. (12) can be solved for (t, .
Let I be the row vector satisfying E@'= 0, say,

l=((-1-R. 'U k }/U 1).
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where

a = —,'(uoUo, b = -u)DUO 'y- —', woUO I rp, o I,
c =2m R 'R.2 0

(15)

This equation has the same form as that of the
equation describing the self-trapping in intense
light beams of slab shape, '&' if the index of re-
fraction depends on the square of the electric
field strength. In this case y, represents the
modulated transverse component of the electric
field and T and ( are the coordinates along and
normal to the direction of a beam, respectively.
Hence, the results obtained in the latter case
can be applied directly to our case: The solution
used in Ref. 1 to represent the self-focusing,
which is given by the condition y» = 0, is the
steady solitary wave'

=2(2U y)'" sech((2R R.U 'X)'"$j,

if and only if p is positive. Since n &0, the wave
is compressional.

On the other hand, for finite values of y, o, Eq.
(14) admits the plane waves of the amplitude

t (p 0 t However, these plane waves are modu-
lationally unstable. '~'~' This may be shown by
introducing p and cr through the equations y,
=p'"exp[ifod)j( 2c)] to w-rite Eq. (14) in the
form'

sp s(po)
e7 e~

(16)

+c~ p
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p
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Solving these equations we can see easily that the
perturbation about po and co grows for sma11 wave

The boundary condition may be specified such
that the flow in the x direction be uniform at in-
finity; e.g. , for x -~, n goes to unity, u vanish-
es, and !p, I tends to a constant l pgp t Then in
view of Eqs. (8)-(10) it follows immediately
from Eqs. (1) and (2) that

n = ( Iy I'-
I y I') j2U '

u = (Iy, I'- Iy„I')/2U, .

Therefore we obtain the following equation for
p, (the nonlinear Schrodinger equation):

number k, having the growth rate -(2acpo)'~'k.
In intense light beams the electromagnetic wave
is trapped in a region of intensified polarization
induced by the wave itself. In the plasma wave,
particles are trapped in a region of increased
attractive magnetic energy produced by the wave
(note n ~

I y, I2); then the wave is trapped by the
nonlinear potential for the SchrMinger equation
(14). In either case steepening of waves due to
trapping is balanced by the dispersion to form a
solitary wave.

It should be noted that in the present case self-
steepening of waves is not caused by catching up
of faster waves in the rear to slower waves in
front (the characteristic crossing) but by trap-
ping due to the nonlinear attractive potential.
This may be most easily seen in the system of
Eqs. (16) and (17) for p and v, which does not be-
come hyperbolic in the limit of long wavelength. '
If the potential is repulsive in nature, namely,
if ac is negative, the system admits, in this lim-
it, the real wave velocities o + (-2acp)"', lead-
ing to the characteristic crossing. In this case
the system can be reduced to the Korteweg-de-
Vries equation' and the instability does not oc-
cur.

Hence it is obvious that the instability has its
origin also in the attractive nature of the nonlin-
ear potential. For a plane wave having a uni-
form energy distribution, trapping does not oc-
cur; however, once the energy density is some-
where increased, particles begin to be trapped
there, acting to increase the wave energy, and
thus the perturbation grows. The T evolution of
the instability is not yet well understood. In the
nonlinear optics, Bespalov and Talanov' pointed
out a possibility that amplitude-phase perturba-
tions of a plane wave bring about its decay into
individual beams. Recently, Karpman obtained
asymptotic forms of a solution under an unstable
condition. According to his results, after a suf-
ficient T a broad, initial hump on the amplitude
of a plane wave splits into diverging solitary
waves. Therefore, it seems to be possible that
trains of solitary pulses resulting from pertur-
bations propagate along the applied magnetic
field.

Since the present system cannot be reduced to
the Korteweg-deVries equation, it is by no means
obvious that we may apply, for the evolution of
interacting solitons, the results obtained from
the Korteweg-deVries equation. " Considering
the fact that in the latter case the modulational
instability does not occur, we would rather de-
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duce that the time evolution in our system has
some different aspects. In this regard one is en-
couraged to investigate in detail the solution of
the nonlinear Schrodinger equation (14).

The authors wish to express their thanks to
Dr. T. Kakutani for his valuable discussions.

R. Y. Chiao, E. Garmire, and C. H. Townes, Phys.
Rev. Letters 13, 479 (1964).

2S. A. Akhmanov, A. P. Sukhorukov, and R. V.
Khokhlov. Zh. Eksperim. i Teor. Fiz. 50, 1537 (1966)
[translation: Soviet Phys. —JETP 23, 1025 (1966)].

T. Kakutani, H. Ono, T. Taniuti, and C. C. Wei, J.
Phys. Soc. Japan 24, 1159 (1968).

L. Spitzer, Physics of Fully Ionized Gases (Intersci-
ence Publishers, Inc. , New York, 1961).

We have another dispersion relation obtained by re-
placing u by -~ in Eq. (7), but the discussion of this
mode proceeds completely parallel, leading to the

same physical results.
SP. G. Saffman, J. Fluid Mech. 11, 16 {1961).
VEquation (7) yields another critical condition:

= 0 &p = 1. In this case, oblique propagations towards
the applied field are governed by the Korteweg-deVries
equation with sub-Alfvenic and rarefactive solitary
waves, but the strictly parallel propagation is in a de-
generate state of the magnetosonic and Alfven wave
and must be considered in an asymptotic sense. 3

V. I. Bespalov and V. I. Talanov, Zh. Eksperim. i
Teor. Fiz. —Pis'ma Redakt. 3, 471 (1966) [translation:
JETP Letters 3, 307 (1966)].

V. I ~ Karpman, Zh. Eksperim. i Teor. Fiz. —Pis'ma
Redakt. 6, 829 (1967) [translation: JETP Letters 6,
277 (1967)].

T. Taniuti and C. C. Wei, J. Phys. Soc. Japan 24,
941 (1968).

N. J. Zabusky and M. D. Kruskal, Phys. Rev. Let-
ters 15, 240 (1965); C. S. Gardner, J. M. Greene,
M. D. Kruskal, and R. M. Miura, Phys. Rev. Letters
19, 1095 (1967).

CAPACITANCE OBSERVATIONS OF LANDAU LEVELS IN SURFACE QUANTIZATION~

M. Kaplitg and J. N. Zemel

The Moore School of Electrical Engineering, U'niversity of Pennsylvania, Philadelphia, Pennsylvania 19104
(Received 13 May 1968)

Capacitance observations of Landau levels in a two-dimensional electron gas induced in
the inversion layer on a (100) surface of P-type silicon are reported. Evidence for sur-
face quantization and the associated lifting of the spin and valley degeneracy are pre-
sented. An observed increase in the carrier threshold with increasing magnetic field is
shown to be further evidence of surface quantization.

Recently, Fowler et al. 'y' have shown that a
two-dimensional electron gas can be induced at
the surface of P-type silicon using a metal-oxide
semiconductor -field -effect transistor (MOSFE T).'
This two-dimensional gas is produced by quanti-
zation of the density of states shielding charge at
the silicon surface, a previously anticipated re-
sult. 4~ Fowler et al. employed the Shubnikov-
de Haas effect to observe this surface quantiza-
tion. Their experiments were sufficiently sensi-
tive to observe Landau levels associated with the
lifting of the electron spin and valley degeneracy
predicted by Fang and Howard. ' In this Letter
we report an observation of an oscillatory capac-
itance due to Landau levels in a two-dimensional
electron gas generated in the inversion layer on
a (100) surface of P-type silicon.

In the absence of thermal or collision broaden-
ing, an electric and a magnetic field perpendicu-
lar to the surface will induce a density of states
given by a series of delta functions, ' i.e., Landau
levels. Assuming neither collision broadening

nor Landau-level splitting due to electron spin or
valley degeneracy, the surface space charge den-
sity Qsc in an inversion layer of P-type silicon
ss y9

e'H

sc 2nhc s v

5[x + (n+ —,')a(u E]-
J, 1+exp[(E-E )/kT]

where 5(x) is the Dirac delta function of argu-
ment x, e the electronic charge, H the magnetic
field perpendicular to the surface; c the velocity
of light, @ Planck's constant, gs and gv the spin
and valley degeneracy, respectively, k T the
thermal energy of the electron, EF the Fermi
energy, Ezy the energy of the first quantum state
for H= 0 (only the first state will be considered
here), and roc =eH/mf~c the cyclotron frequency
associated with m~*, the transverse effective
mass of the electron. The summation is over all


