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particles and one of them belongs to the nonet.
An immediate consequence of the present dou-

ble-pole model is the prediction that the ~p mass
distribution resulting from an initial KK interac-
tion should be similar to that reported in Ref. 3
for the final-state KK distribution. For example,
if the K or K+ pole can be isolated in K N-A, (A
or Z), then we would expect to see a single peak
in A, -mp. As emphasized in Ref. 2, data on the
KE mode are of considerable interest for a two-
particle coupling model of the A., meson', &, and

0, will vary between different reactions with dif-
ferent production mechanisms for the 1 and 2

components of the double pole. Thus, it might
well be possible to see the KK mass distribution
in some reactions as double peaked; the corre-
sponding ~p distribution in this same reaction
could, in general, be more complicated than that
of Fig. 1(a) for the BNLKK mode. Since, as not-
ed below Eq. (2), the fit parameters can be var-
ied considerably, better and more data are also
of interest to determine precisely how close the
A, complex is to being an exact double-pole,
which at present is technically a single point in a
continuum of allowed two-pole values. The ap-
propriate formula, in any case, is Eg. (4) of Ref.
2. For example, the assumption I', =—0 can be re-
laxed and we find reasonable fits with I', = 12
MeV. This is somewhat larger than the estimate
in Ref. 2 and, apparently, it should be re-empha-
sized, is not directly related to the width of the

KK distribution. s
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We study the trajectories in Veneziano's amplitude which give rise to true Begge be-
havior (without the oscillations inherent in amplitudes with very narrow resonances). It
is found that the asymptotic form of the imaginary part of the trajectory is strongly con-
strained, but an example of a trajectory having the requisite properties is given.

Taking clues from finite-energy sum rules,
Veneziano' has recently proposed a form for the
amplitude of mm -m~ which incorporates Regge
behavior with linearly rising trajectories and
crossing symmetry. Veneziano's discussion is
formulated in the zero-resonance-width approxi-
mation, in which all the resonance poles appear
on the real axis. We have studied the problem of
introducing finite widths while maintaining the
features of Regge behavior with linearly rising
traj ectories and crossing symmetry. Assuming
that the trajectory o, (s) satisfies a once-subtract-

lim — =+~ for all JL(. &0,
lm n(s)

1—ps ~+~ s

but

fma(s)
ds (qs

ed dispersion relation with a cut along the posi-
tive real axis only, we find that its imaginary
part is strongly constrained. The amplitude is
consistent with Regge asymptotic behavior only
if

1851



VOLUME 21, NUMBER 27 PHYSICAL REVIEW LETTERS 30 DECEMBER 1968

in order that n satisfy a once-subtracted disper-
sion relation. The derivation of this result is in-
dicated below, and some implications discussed.
Moreover, we give an example of a trajectory
which has all required features.

Veneziano's amplitude is

A(s, t, u) =,g I'(1—n(s))r(1-n(t))
1"(2-n(s) —n(t))

r(I- ( ))r(1- (t))
I'(2- a(u) —n(t))

r(1-n(u)) r(1-n(s))
r(2-a(u)-n(s))

with the constraint

which is the asymptotic form obtained from a
Regge trajectory of negative signature if'

cotta(s)--i as s-~,
i.e., if

Im n(s) -+~.
We will now show that if, for some positive p, ,

l-p,
Im n(s)/s -0,

then the third term in (1) grows faster than any
power of s, as s goes to infinity along the posi-
tive real axis. To demonstrate this, we invoke
the following theorem, whose rather lengthy
proof will be published elsewhere.

Theorem. —If (a)

n(s) + a (t) + n(u) = 2,

where

(2)
n(s) = a+ bs+—,, ds',s Imn s'

~ s, s'(s'-s)

s+t+u =3m '+m '=M'.
(d

(3) and if (b)

Differentiating (2) with respect to s for fixed t,
gives, using (3),

n'(s) —n'(M' —s —t) = 0.

Thus n' is a constant, so that

(c)

Imn(s) -+~ as s -+~,

p. -1
I(s) =—s 1mn(s) -0

as s-+~, for some p. &0,

n(s) =a+bs

with (2) implying that

(d) I(s) satisfies a weak smoothness condition
like

3g+~25 = 2,

Since n(s) is real for negative s, both a and b

are real, and this immediately leads to poles in
the amplitude for large positive s, since the
gamma functions in (1) are singular at nonposi-
tive integers.

We therefore discard the constraint (2), and
ask which forms of a(s) are consistent with

Regge behavior of the amplitude A, given that

n(s)-bs, b&0, as s-~.
One sees easily that the first two terms of (1)
lead to an asymptotic form

lI(s,)-I(s,)l(Cls, -s,
l

for some C,

n & 0 when Is, -s,
I
-1,

then' (A)

I—p,lRe[a(s)+ n(u)]l(C's 1nS for large s;

(B) there exists a k &0 such that

-Re[n(s)+ n(u)]/Imn(s) &k for large s.

Turning now to the third term of (1) for suffi-
ciently large s, from (B)

A p 1
I+ II sinma(t) I'(n(t)) [1-costa(t)

-cotta(s) sinw n(t) ][n(s)]
n(t) -1

(8)

-Re[n(s) + n(u)] -+~,

so that the arguments of all the 2 functions are
large, and we have [recalling that n(u) is real
and negative, and that n(s) —bs for large s with
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b &0]

Ql'(I- n(s))I'(1- n(u)) 2Pe
-m Im n(s)

I"(2-n(s) —n(u)) (2m)
"'

(s )

1

[ ( ) 1] In(8) [1 ( ) ( )p n(s) n(u)
(12)

By (c) and (B)

n(u)+ n
n(s)

-n(u)+ —'
2

n(s)
1-n(u) —n(s)

1-n(u) —n(s) 1 2

1—n(s) —n(u)
(13)

(14)

n(s)
1-n(u) —n(s)

1-n(u) —n(s)
n(s)

1—Re[n(u) + n(s)]

1-n(u)-n(s)
n(s)

exp Imn(s) arg (15)

1-Re[n(u) + n(s)]n s -2mlmn s
e1-n(u) —n(s)

But, by (A)

e(s) oC s Q(p, &p,1-n(s)-n(u)

so that

1-n(u) —n(s)
n(s) e ~ C"e-limn(s) „--,'pImn(s) p' -Re[n(u) + n(s)]

(s )1-n(s) —n(u)

„--,'m 1mn(s) g' k Im n(s)

&sr p, 'k)-lmn(s)
&~C e s

(16)

(19)

(20)

which becomes infinite faster than any power of s since Imn(s) -+~. This establishes the result.
It is possible to give an example in which Imn does grow almost as fast as s, and where the third

term is well behaved. Suppose

Imn(s) =s/(lns), v&1, s &s, &l. (21)

Then one shows explicitly that

-Re[n(s)+ n(u)]=As/(1ns) + O(s/(lns) ),
v+ 1 v+2

where

(22)

Then

1nA.dA.

(z-i)(x + 1)
&0. (23)

—n unu + n(s v+1
n(s)

= exp[2 vs/(lns) ]x lower order terms, (24)

n(s)
—1-n(s) —n(u)

1—n(u)-n(s)
2 v+1

=exp[2v &slnlns/(lns) ]xlower order terms, (25)

1853



VOLUME 21, NUMBER 27 PHYSICAL REVIEW LETTERS 30 DECEMBER 1968

s 1
n(s) = bs+- 1

+ lower order terms.
m v-I (lns)

whereas

—m Imn(s) V
e = expL —ns/(lns) ],

so that the product of the three goes to zero faster than any power of s. Notice that in this case

(26)

Therefore,

n (t)—1
+ lower order terms

mb(v —1)(lns)
(28)

m I'- Imn(s)/n'(s),

we find

(29)

VI -s'/(lns) .

The physical significance of this relation is not

which means that we have not only poles in the l

plane, but cuts as well, whose end point is l
= n(s) This. possibility was anticipated by Vene-
ziano. '

Because the constraint (2) is not satisfied in
these models, there will be poles in the ampli-
tude at the positive even integers. This indicates
the existence of a trajectory displaced from the
leading trajectory by one unit, but with the same
signature. There are, however, no multiplica-
tive fixed poles at the wrong-signature nonsense
points.

A model containing the multiplicative wrong-
signature nonsense poles, without the poles at
n(s) =2n, has been proposed by Virasoro. ' Argu-
ments similar to those presented here show that
there are no forms of the trajectory which are
consistent with Virasoro's amplitude.

Most authors' who discuss the implications of
linearly rising trajectories conclude that the
widths go to zero rapidly as s increases because
of centrifugal-barrier arguments. In our exam-
ple this is not the case. If we can relate the
width to Imn in the usual way,

clear. Since the spacing between successive res-
onances becomes much smaller than the width, it
becomes impossible to pick out the effects of a
single resonance. Probably then for large ener-
gy, the resonance region washes out into some
smooth background.

A proof of the theorem and a more thorough dis-
cussion of the implications of the example pre-
sented here will be published elsewhere.
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