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Decay-ra e e ancDe - t nhancements are calculated in an exactly soluble model of a weak decay
into three hadrons. Very large enhancements and de-enhancements can be pro uce y
a purely attractive, moderately strong, pairwise, final-state interaction. The enhance-
ments are also very sensitive to the localization of the bare weak-decay amplitu e.

Direct analytical methods have provided little
insight into final-state interaction (FSI) effects in
weak three-body decays. We have therefore in-
vestigated numerically these effects in an exactly
soluble model and present here results showing
strong dependence of decay rates on the FSI. The
model we studied describes the weak decay of a

+0+ particle (the 6) into three identical 0 daugh-
ters (the H's). To simplify the three-body dy-

amies we assumed nonrelativistic kinematics
Iand separable s-wave H-H interactions.

The (separable) fully off-shell H Ht matr-ix
has the form

(q'lt(W) Iq&
= v(q') ~(W)v(q).

We chose a vertex function of the form

v(q)=(4~) "q'(q'+1) ', (2)

which is capable of producing an s-wave H-H res-
onance. The range of v(q) was taken as the unit
of length, hence the 1 in Eq. (2). We also set h

H=M =1. The two-body propagator T(W) appear-
ing in Eq. (1) is

The matrix element & is represented as a formal
expansion in powers of the H-& ~ matrix in Fig.
2(a,). Defining the auxiliary amplitude, f, for the
decay of G into an H plus a correlated H-H pair
as in Fig. 2(b), we obtain the integral equation of
Fig. 2(c), which sums the infinite series of dia-
grams of Fig. 2(a). This off-shell one-dimen-
sional integral equation arises from the introduc-
tion of separable potentials into the three-body
proroblem' its solution is equivalent to that of the
three-body Schrodinger equation. ' This equation
for fwas solved 'numerically using the contour-
deformation method. ' In the rest system of the
G, the constraints of energy, momentum, and
angular-momentum conservation make the par-
tial decay rate a function of two variables. We
choose the kinetic energies E, and E, of two of
the H's. Combining the kinematic constraints
with the Bose statistics of the final state, we ob-
tain in terms of the functions f, v, and r the fol-

I 60

T(W) = —
I
(w/32v) + fd'qv'(q)(W q') ']- I 40—

where v is the (dimensionless) potential strength
chosen so that v=1 corresponds to a zero-energy
H-H bound state. The H-H phase shifts for vari-
ous values of v over the energy range relevant to
our three-body calculations are shown in Fig. 1.
We see that for v-0. 7 the phase-shift is large
but nonresonant over a wide range of energI. es,
whereas for vk0. 9 there is a sharp low-energy
H-H resonance. As v-1, the resonance energy
goes to zero and the width vanishes.

The matrix element for the decay G-3H may
be written (to first order in the weak interaction
and to all orders in the strong interactions)'
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where $3H
' is the appropriate scattering wave

function of the strongly interacting 3& system.

FIG. 1. The H-H phase shifts as a function of energy
for various coupling strengths v. Units are described
in the text.
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lowing expression for the partial decay rate:

|II= (s'It /s E,a E,) = NS(E,E,-(-,'E-E, -E,)')
I Z(E„E„.E) + ~(E=.E)~(E=.E,)f(E,)

+v(E-2E,)7(E-2E,)f(E,) +~(a(E, +E,)=,'E)~(2(E, +E,}-lE)f(E-Ei-E.}I, (5)

where E is the total kinetic energy released in
the decay. The constant N appearing in Ep. (5}
contains purely numerical factors, including the
weak-decay coupling constant. Since we are only
interested in enhancements, we do not specify N.
The function F appearing in (5) is the bare weak-
decay amplitude

E(pl, p2, p3) (p1, p2, p3I& klG), (6)

H

H

subject to energy and momentum conservation.
Eis completely symmetric in the 8 coordinates.
We chose the simple form

+(p, p. , p.) = P'[P'+ '(P;+P-.'+P.')] ',

where P
' is a length determining the spatial ex-

tension of the bare weak amplitude.
The enhancement of the three-body decay rates

due to strong final-state interactions is defined
as

h(v, E, P')

= fdE, dE, 6I(v, E, P')/fdE, dE, 6t(0, E, P'), (8)

that is, as the total decay rate divided by the to-
tal rate in the absence of strong interactions.
We have studied this enhancement for two values
of P' (0.1 and 10), three values of the kinetic en-
ergy (0.0466, 0.107, and 0.400), and many values
of v between 0 and 1. When P'=0.1 the weak ver-
tex is spread out in configuration space compared
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~ I I ~
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I I l ~
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1 I I I

I
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~ I l I

! with the range of the strong interaction. Con-
versely, P' = 10 corresponds to a nearly point
vertex. The energies 0.0466 and 0.107 were cho-
sen so that when the two-body resonances could
overlap, they would be quite narrow and quite
broad, respectively. The third value, E =0.4,
was chosen to favor the strong but nonresonant
interactions occurring at v &0.75.

In Fig. 8(a) we have plotted the enhancement as
a function of v for E=0.0466. We first note the
striking difference between the enhancement for
P'=10 and that for 0.1. From Eq. (4) we see that
when P'= 10, the decay rate is sensitive to the
three-body wave function at small distances,
while for P'=0. 1 the decay rate samples a large
volume of the wave function. Clearly the strong
interactions can (and do) affect the former more
than the latter. For P =10 the enhancement var-
ies over five orders of magnitude, from a de-en-
hancement of less than 0.03 to a maximum of
2500. We emphasize that this surprisingly large
range of h, including as it does substantial de-
enhancements, results from a purely attractive
H II interact-ion of only moderate strength. The
enormous de-enhancement near v = 0.4 arises
from nearly total destructive interference be-
ween the first and second terms of Fig. 2(b). The
first value of v for which final-state H-H reso-
nances can occur in the kinematically allowed re-
gion (Dalitz plot) at this energy is v=0.94. As v

increases from 0.94 to 1 and the H-H resonance
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FIG. 2. (a) Diagrammatic representation of the mul-
tiple scattering expansion for 6 3K weak decay.
(b) Diagrammatic definition off, the amplitude for de-
cay of the G into II plus correlated H-H pair. (c) Dia-
grammatic representation of the off-shell integral
equation for f.

FIG. 3. The enhancements in G 3K decay as a func-
tion of the K-K coupling strength v for weak-decay ver-
tex ranges P =10 and P =O.l. Also shown is the abso-
lute value for the three-body Fredholm determinant.
These are show for kinetic energies of (a) 0.0466,
(b) 0.107, and (c) 0.400.
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bands move through the Dalitz plot crossing in
various places, we see no evidence for anoma-
lous behavior of the enhancement. The very
large enhancements for v &0.9 come almost en-
tirely from the last rescattering. For this case
(E=0.0466, P'=10, v)0.9) the solution f of the in-
tegral equation Fig. 2(c) has a magnitude close to
that of the inhomogeneous term, but differs from
it in phase by -90'. Thus the impulse approxima-
tion (one final-state rescattering) would give the
correct magnitude for S. We must not conclude
from this that it is safe to treat these problems
in the Born or impulse approximations. In the
case P'=0. 1,E=0.0466, there is actually a re-
gion of de-enhancement when the H-H resonance
bands are in the Dalitz plot. Recall in comparing
these cases that the strong interactions are iden-
tical. To produce a de-enhancement in the pres-
ence of overlapping resonances, the sum of all
rescattering corrections must alter f so that the
first and second terms in Fig. 2(b) can interfere
destructively. In fact we can show that the Neu-
mann series for Fig. 2(c) diverges strongly for
v) 0.5; so these results cannot be reproduced in
any finite order of perturbation theory.

We show the enhancements for E =0.107 and E
=0.4 in Figs. 3(b) and 3(c), respectively. Again
we note a marked difference between P =10 and
P'=0. 1. For E=0.107 the resonances enter the
Dalitz plot around v=0.88; for E=0.4, they enter
around v =0.78 although at this value of v the II-H
resonance is very broad. As v approaches unity
and the resonance energies approach zero, the
diminishing three-body phase-space causes the
enhancement to decrease, accounting for the drop
in h near v= 1 in Figs. 3(b) and 3(c), since the
f's vary imperceptibly there. This diminution of
8 is also present at E=0.0466 but occurs too
close to v= 1 to appear in Fig. 3(a).

Also plotted in Fig. 3 are the absolute values of
the Fredholm determinants of the integral equa-
tion of Fig. 2(c). Note that the parameter P' is
associated with the weak-decay amplitude and on-
ly enters the integral equation in the inhomoge-
nous term; hence the determinant does not de-
pend on P'. Each of the determinants has a mini-
mum which corresponds to a three-body reso-
nance. This resonance becomes more pronounced
and moves to higher energy with v. This behav-
ior may seem contrary to intuition, but it occurs
also in several other models. There seems to be
no reason to believe that all resonances are the
analytic continuation of bound states to weaker
coupling. In fact there is a three-body bound
state in our model which is unrelated to the reso-
1848

nance and whose binding energy can be shown to
increase with v. The effect of the 3H resonance
on the enhancement is twofold: It produces a lo-
cal maximum in S (as a function of v) and changes
the sign of the real part of f, accounting for the
interference minimum at slightly higher v. Wheth-
er this resonance maximum, or the interference
minimum, or the final-rescattering enhancement,
is the most striking feature of 8 as a function of
v depends on the detailed behavior of all the am-
plitudes involved.

We conclude that strong enhancements or de-
enhancements can only be produced by FSI when
the weak-decay amplitude is strongly localized in
space. We further note that it is unnecessary for
resonances to appear in the Dalitz plot, or even
for the two-body force to produce resonances in
order to have large enhancements or de-enhance-
ments. We therefore conclude that it is impossi-
ble to make general statements about the effects
of strong FSI on any particular weak-decay pro-
cess in the absence of a detailed dynamical cal-
culation, However, it is reassuring that appar-
ent puzzles such as the anomalously fast g-3g
decay or the apparently inhibited X' —pm' decay
could be accounted for within the framework de-
scribed here without recourse either to new two-
body resonances or to new selection rules.

There are many other interesting features of
our simple model and these will be discussed at
greater length in a forthcoming article. We also
hope to study strong production of hadronic three-
body final states. The sensitivity of our results
on weak decay to the structure of the bare weak-
decay vertex leads us to expect great sensitivity
to the mechanism of production.
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