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NEW APPROACH TO CALCULATIONS OF NUCLEAR MOMENTS OF INERTIA
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Department of Physics, University of Toronto, Toronto, Canada
(Received 3 June 1968)

A new approach to moment-of-inertia calculations yields a formula superior to the
usual cranking-model formula and casts doubt on the apparent success achieved with
pairing-force theory in cranking-model calculations.

In this Letter we present an approach to the
problem of calculating the moments of inertia of
deformed nuclei based on Lipkin’s' suggestion
for treating collective motions in a many-body
system. This approach leads to an explicit ex-
pression for the moment of inertia which seems
to be superior to the usual cranking-model® (CM)
formula. Our calculations, both in the transuran-
ic region and for nuclei in the s-d shell, indicate
that the success achieved by Nilsson and Prior®
in caluclating the moments of inertia of heavy de-
formed nuclei using the CM with pairing forces
(Belyaev’s formula) may be more fortuitous than
real.

The argument begins by accepting as an experi-
mental fact the existence of well-defined ground-
state rotational bands in the low-energy spectra
of even-even deformed nuclei,

EJ=EO+)\J(J+1)7Z2, 1)
where A=1/2I and [ is the so called moment-of-
inertia parameter. Following Lipkin an intrinsic
Hamiltonian H' is constructed by subtracting the
operator associated with the collective energy,

H'=H-)\J 2 2)
op

Since every state in the rotational band is degen-
erate with respect to H’, any linear combination
|4) of eigenstates of H in the band is also an ei-
genstate of H’ with eigenvalue E,. It can then be
readily shown that the conditions

<le'—EOl¢>=<w|(H'—EO>JOp2I¢>=0 (3)

are valid. Conditions similar to (3) were first

employed by Goodfellow and Nogami®* in connec-
tion with their application of Lipkin’s suggestion
to nuclear pairing-force theory.

The conditions (3) may be written in more illu-
minating form as®

E, =<¢IHI¢>—A<¢IJOPZI¢> (4a)

and
N <<blHJ2p21w>—<lelw><leop21w> |
CIEAS DRSNS [ [

(4b)

In practice the many-body intrinsic wave function
|#) cannot be determined; so we are forced to
calculate the averages in (4) by means of some
trial wave function which may be obtained, for
example, from a variational calculation. In this
case expression (4b) amounts to a consistency
condition imposed on the trial wave function.

It is generally believed® that the deformed
ground-state wave function in a proper Hartree-
Fock (HF) calculation is a reasonably good exam-
ple of an intrinsic state of the type |4). Accord-
ingly, such calculations should yield a reason-
able value for the rotational parameter A. Intro-
ducing a HF basis, expression (4b) can be writ-
ten as’

1 Z)4<0|H|4>(4IJOP2IO>

A=5rT PACEACEICENCY

(5)

where |0) is the HF ground state and the sum is
over all two-particle, two-hole states.

Our main interest, however, is heavy nuclei,
where HF calculations are virtually impossible.
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Encouraged by the large overlap between Nilsson
wave functions and HF wave functions in the s-d
shell,® we have carried out calculations in the
transuranic nuclei using residual pairing forces
in BCS approximation and Nilsson wave functions.

2]2

Within the framework of the nuclear pairing-
force theory the state |0) in expression (5) be-
comes the BCS ground state and the sum is over
the complete set of four quasiparticle states.
For this case we obtain the following expression
for the moment of inertia I from formula (5):

Lox, x
VL2 s Ta10 “10%00 26 10) ] +AD
1,2,
I=—= p p 5 (6)
22 21 ?aAEIZa]ma T91a (”1a”2a‘“2a01a

In this expression, the sums indicated by the in- |
dices 1 and 2 are over all single-particle states

and -« is the isospin index; the j12a" are matrix
elements of the single-particle angular momen-

tum operator (x component) and the AEq19, are
energies of two quasiparticles,

AE =E. +E_ -2G

12c la 2a (7)

aulavlau2a02a’
where

Ela

=[(e ®)

_ 2 2\1/2
la )\a) +Aa 1,
and the # and v are the usual parameters of the
BCS trial wave function. Finally, the quantity
AD, which depends upon the # and v and the
leQx, appears to be small in all the numerical
calculations and may be omitted. In the limit of
no pairing, expression (6) immediately reduces
to the simple expression®

. X, x.2
(257 12« 7 21a )

1(0)__: 1,2,&

9)
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1,2,
In Eq. (9), the index 1 refers to particle states
and the index 2 to hole states. Formulas (6) and
(9) are to be compared with their CM counter-
parts, the Belyaev formula,*

1- 2
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, (10)

and its simplification in the limit of no pairing,

P
] ©_g Z _162_‘2‘__5_1_0’_.
¢ 1,2,0 lo 2«

It is interesting to note that the neutron contribu-
tion to the moment of inertia is independent of
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the proton contribution in the CM formulas (10)
and (11) in contrast to formulas (6) and (9) where
these contributions are mixed.

If one believes that the long-range part of the
two-body forces has been well accounted for by
the HF approximation and that the short-range
part can be represented approximately by a pair-
ing force, then formula (6) should be a valid ex-
pression for the rotational parameter. Further,
if for some reason the short-range part of the
two-body forces can be neglected, then the sim-
pler formula (9) should give a reasonable value
for I. Expressions (6) and (9) have the advantage
over the CM formulas that they are derived en-
tirely on a quantum-mechanical basis and in par-
ticular, formula (9) does not possess the “unphys-
ical singularities” which occur in formula (11)
when unoccupied and occupied states are very
close together. Moreover, we can show in sim-
ple models that expression (9) gives approximate-
ly % the rigid-body values for I in contrast to the
CM formula (11) which gives Irigid' Hence, for-
mula (9) gives closer agreement with experiment.

In order to re-examine, from the point of view
presented here, the role of pairing forces in the
calculation of the rotational parameter, we have
carried out detailed numerical work to compare
formula (6) with (9) and with the corresponding
CM formulas. Figure 1 shows the experimental
results for the transuranic nuclei and also for
our calculations using both formula (6) and for-
mula (9). We have also repeated the calculations
of Nilsson and Prior using Belyaev’s formula with
the choice of parameters suggested by Szyman-
ski.!' Our calculations with Belyaev’s formula
(which confirm the Nilsson-Prior results) are
shown in Fig. 1 for comparison. It is quite re-
markable that the values estimated from the sim-
ple expression (9) give extremely good agree-
ment with experiment, except for the transition
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FIG. 1. Experimental values of the moment of iner-
tia 2I/%2 (circles) compared with predictions calculat-
ed from Belyaev’s formula (10) (dashes), from our for-
mulas (6) (dots), and (9) (crosses).

regions between spherical and deformed nuclei
where the rotational model fails in any case.
However, the results obtained from formula (6)
are rather unsatisfactory. This seems to sug-
gest that the importance of pairing forces in the
calculation of the rotational energy is overempha-
sized.

It is even more remarkable that expression (9)
appears also to give good agreement with experi-
ment for the moments of inertia of s-d shell nu-
clei. Figure 2 shows a comparison of the experi-
mental values for Ne®, Mg, and Si?® with our
calculations using expression (9) and Nilsson
wave functions. Also shown in Fig. 2 are the CM
calculations which we carried out using Nilsson
wave functions. The agreement with experiment
which we obtained using expression (9) would be
less satisfactory, however, if we had used HF
theory because of the gap which appears in the
spectrum; this gap, which does not exist in the
unshifted Nilsson spectrum, presumably accounts
for the differences in Fig. 2 between the values
obtained in our CM calculations and those of Kel-
son and Levinson.®

The present investigation seems to cast doubt
on the significant role attributed to pairing forces
in moment-of-inertia calculations. If one accepts
that the present formulation is superior to the
CM, then some of the quantitative judgments
based upon the CM (e.g., the results of Nilsson
and Prior), in which the pairing force plays a
very essential part, should be treated with more
reservation.

We are indebted to the National Research Coun-
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FIG. 2. Experimental values of the moment of iner-
tia 2I/%? (circles) compared with predictions calculat-
ed from CM formula (11) using the HF wave functions
of Kelson and Levinson (solid dots), from formula (11)
with Nilsson wave functions (squares), and from our
formula (9) using Nilsson wave functions (triangles).
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tion of the Institute of Computer Sciences of the
University of Toronto is gratefully acknowledged.

4. J. Lipkin, Ann. Phys. (N.Y.) 9, 272 (1960).

%D. R. Inglis, Phys. Rev. 96, 1059 (1954).

33. G. Nilsson and O. Prior, Kgl. Danske Videnskab.
Selskab, Mat.-Fys. Medd. 32, No. 16 (1961).

43. F. Goodfellow and Y. Nogami, Can. J. Phys. 44,
1321 (1966).

SFormula (4b) is formally equivalent to the result ob-
tained by Skyrme. See T. H. R. Skyrme, J. Phys. A:
Phys. Soc. (London) Proc. 70, 433 (1957). It is easy to
show that Eq. (4b) gives the correct mass for the cen-
ter-of-mass motion in the translational problem.

éR. E. Peierls and J. Yoccoz, J. Phys. A: Phys. Soc.
(London) Proc. 70, 381 (1957); R. E. Peierls and D. J.
Thouless, Nucl. Phys. 38, 154 (1962).

"Chi-Yu Hu, Nucl. Phys. 66, 449 (1965). As a conse-
quence of the Hartree-Fock condition (2|H-AJ2|0)=0,
matrix elements involving one-particle, one-hole
states do not contribute in Eq. (5).

8. Kelson and C. A. Levinson, Phys. Rev. 134, B269
(1964); I. Kelson, Phys. Rev. 160, 775 (1967).

SFormula (9) is equivalent to the expression obtained
by Hu in Ref. 7.

1821



VoOLUME 21, NUMBER 27

PHYSICAL REVIEW LETTERS

30 DECEMBER 1968

s, T. Belyaev, Kgl. Danske Videnskab. Selskab,
Mat.-Fys. Medd. 31, No. 11 (1959). In Ref. 7, Hu
shows how in a certain approximation Eq. (5) reduces
to the cranking-model expression Eq. (11) in the limit

of long-range forces; in the limit of short-range forc-
es, this approximation leads to Eq. (11) except for a
factor of %, in agreement with our calculations.

117, Szymanski, Nucl. Phys. 28, 63 (1961).
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The parity-nonconserving nucleon-nucleon potential is calculated from the Oakes theo-
ry of weak interactions on the assumption that = and p exchange terms dominate. It is
found that this theory predicts a circular polarization of +(1.8 +0.9) x10~* for 482-keV y
ray from 81Ta. The observed polarization is —(0.06 +0.01) x10~4,

Recent experiments*™ indicate the existence of
a parity-nonconserving nucleon-nucleon potential.
Believing that this is a manifestation of the AS=0
nonleptonic weak interactions, we obtain a fur-
ther test of theories of the weak interaction. Un-
fortunately the present experiments all involve
heavy nuclei, and there is a significant possibili-
ty that the uncertainties in the nuclear physics
destroy the reliability of the predictions. Until
experimental information becomes available on
simpler nuclear systems,® we feel justified in
proceeding on the belief that the calculations are
reliable at least as to orders of magnitude. Sup-
port for this view may be drawn from the fact
that the calculations of Wahlborn® and Manqueda
and Blin-Stoyle,” using different approximations
for nuclear physics, arrive at nearly identical
results, —0.6X10* and -0.7%X10~*, for the polar-
ization of the 482-keV y ray in '®'Ta.

Assuming that the dominant contributions to the
parity-nonconserving (pv) NN potential are weak
boson exchange and pion exchange,® we previous-
ly calculated the parity nonconservation predicted
by the Cabibbo Hamiltonian® and the d’Espagnat
Hamiltonian.’® The Cabibbo Hamiltonian was con-
sistent with the data while the d’Espagnat Hamil-
tonian was in disagreement by almost an order
of magnitude. In the present paper we report the
results of a similar calculation using the Hamil-
tonian recently proposed by Oakes,** which intro-
duces neutral currents as a mechanism for CP
nonconservation.

The Oakes Hamiltonian Hp may be written as a
sum of charged and neutral current terms

H=H *H. (1)
The term involving the charged currents is the
standard Cabibbo Hamiltonian.? The neutral
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current term is also of current Xcurrent type:

e (0) (O)x
HN—(G/\/?)J) J (2)

where G is the Fermi constant and J© is a neu-
tral current which we call the Oakes current. It
is of V+A form and is universal in the sense

that it is the sum of a hadronic current Jp54‘°’,

(0)
Jhad

\[38+Zsin<p(V+A)7, (3)

=cos@(V +A)3 -
and a leptonic current. ¢ is found to be approxi-
mately 102 from the observed CP nonconserva-
tion in the neutral kaon system, which is propor-
tional to sing. In calculating the parity~-noncon-
serving effects we neglect this small CP noncon-
servation.

The m-exchange graph is calculated from the
weak parity -nonconservation NN7 vertex,® which
is estimated by an extension of the Suzuki-Suga-
rawa current-algebra analysis of the pv nonlep-
tonic hyperon decays.*

We relate (Nen®|HQPY |N;) to(Nea®|He| Ni) by
noting the following:

(i) The part of the HNPY which contributes to
the hyperon decays is of order siny. Such terms
are neglected in our analysis.’® Thus the re-
duced matrix elements (B Il (HoPV)Z|IB) calculated
from the hyperon decay data are equal to the re-
duced matrix elements of HcPV calculated from
the same data. In particular (B Il (HoPV)27 IB) ~0.

(ii) Only the AI=1 part of HPV contributes to
(waa |HPV|N;) if CP is conserved.'®' With no
contribution from (HPV)27 the only contribution
is from (HDV)sﬁ—the third component of the oc-



