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The reaction r+n ~P is analyzed in terms of a model based on the exchange of the p

Regge pole and the associated cuts generated by absorption. The data, in particular the
absence of a dip in the differential cross section and the large positive values of the den-
sity matrix element p()0, can be well described by this model only if the amplitudes do
not vanish at nonsense, wrong-signature points.

The experimental data for the reaction' m+n

-vP have two outstanding features: (1) The den-
sity matrix element ppp of the & is large, ppp

=0.4. (2) There is no dip in the differential cross
section. Since the only simple exchange mecha-
nism allowed in this reaction is p exchange, one
expects' that ppp 0 Since the ~p vertex must
vanish when &&=0, one also expects' in the
framework of the standard theory of Reggeiza-
tion that all helicity amplitudes and thus the dif-
ferential cross section should have a dip at the
nonsense, wrong-signature (NWS) point o'p(t) =0,
or at t= -0.6 (GeV/c)'. The violation of the pre-
dictions shows that the p pole alone is not able to
explain the data. In this Letter, we show that the
data can be understood in terms of a model in-
cluding in addition to the p pole the associated
Regge cuts generated by absorption, '~ provided
that the amplitudes do not have NWS zeros; i.e. ,
the residue functions have Mandelstam-Wang
fixed poles. '

The reaction n+n —~p has also been analyzed
in terms of the absorption model' and the pure
Regge-pole model. The absorption model can
explain the large value of ppp by the unnatural
parity exchange caused by the absorption, but
suffers from the usual difficulties with the ener-

gy dependence. In the pure Regge-pole model
one is forced to introduce a secondary trajectory
of unnatural parity corresponding to the 1+ parti-
cle B(1220). The fit to the data then gives values
for the trajectory and coupling parameters of the
J3 which are of the same order of magnitude
[oB(0)=o'p(0)j as those of the p. This is not
pleasing, since the & does not seem to contribute
strongly to other reactions. For a trajectory
passing through mB' one can only have oB(0)
= o.'(0) if the slope of the B trajectory is veryp
small compared with most Regge-pole slopes;
conversely, with a normal slope one would have
nB(0) = —-'„and at high energies (e.g. , s = 10
GeV') there should be little contribution from B
exchange. Although one cannot exclude the B, we
shall show that one can do well without it.

We shall calculate the cut correction by as-
suming in the conventional way that the absorp-
tion gives rise to diffraction elastic scattering
which is spin independent and equal in the initial
and the final state (&uP elastic scattering is not
known).

We write the full amplitude in the form

ltf =ftfP+~M P
7

where M~ is the s-channel p Regge-pole exchange,
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MP& is the Regge cut, and A. (the only parameter introduced apart from those in the pole terms) is a
parameter to account for the effect of absorptive diffraction inelastic scattering. MP~ is given by'

PP iqM (s, z)= —,— dQM (s, x)M (s, y) cosny,p el
16m'8' A.~A.d. kg A.g

where & and q are the c.m. energy and magni-
tude of the c.m. momentum, dO=dxdp, x is the
scattering angle for the p exchange term, and y
is the scattering angle for the elastic scattering.
The variables x, y, and p are related by y = xz
+ (I-x')"'(I-z')"' cosp. The quantum number n

=i(Ac-Ad)-(&„-&h)i gives the net amount of helic-
ity flip. Me& is the inital or final state elastic
scattering amplitude, defined below.

We note the following properties' of the total
amplitude M= M + &M+'. (I) Only one new pa-
rameter, &, is introduced; all other parameters
are in MP and Mel. (2) The cut and pole contri-
butions a,re entirely sepa, rate, different kinds of
singularities in the ~ plane; there is no double
counting. e (3) The phases of MP and Mel are
roughly opposite so that one has destructive in-
terference in iMp+&M~'i. (4) The size of the cut
depends significantly on the helicities through the
quantum number n [cf. Eq. (I)], so that iMPi
= AiM~'i at different values of t for different he-
licities, and in the sum over helicities

haps +30%. Analyses' (under the same assump-
tions as the present work) of 7t P -7t'n, yp -m+n,

and backward v~P elastic scattering all seem to
give a value within 30% of & = 2.

We parametrize the amplitudes as follows.
The spin-independent ela, stic -scattering matrix
element M+ is written in the form

M (s, t) = i2q—Wv e
el . At/2

(2)

where A[= t.5 (GeV/c) '] measures the width of
the forward diffraction peak and OT is the rN to-
tal cross section, OT=24 mb.

To obtain the p-pole contributions to the s-
channel amplitudes (we write M~i~P = M&~ l. P),
we go to the t channel, impose the requirement
that only the quantum numbers of the p occur
there, take only the Regge-pole contributions,
and cross back to the s channel. ' The resulting
Regge-pole amplitudes can be written as

Q iM +m~i2,
p, A. 'A.

M+ '=M++o=p,

M ++ = -M+ + = -i Piv 2 s tT/M»,

M +=M+++=i(pi-p~)2v2s(-t) '2T/M~ (3)
different terms have dips or breaks at different
values of t. This leads to a fairly smooth da/dt'
(5) If the amplitudes have NWS zeros, all pole
terms in the sum

where

t —I
I'(-~ (t))ll-e P ]

s ir (y (t)-
so p

P iM +~MP~('

are strongly suppressed at the same value of t
and the cut correction is not sufficient to fill in
the dip in da/dt.

The parameter ~ arises from the contribution
of coherent inelastic states in the intermediate
state between the quantum-number exchange and
the diffraction elastic scattering; it is fully dis-
cussed in Ref. 6. It is shown there that the phys-
ical interpretation of ~ requires its value to be
about 2, with an allowed reasonable range of per-

and the parameters are the p trajectory o'p(t),
the energy scale so, and the two residue func-
tions P, and P, . The remaining six amplitudes
are obtained by parity conservation:
= (-) + P'M~ ~t . The amplitudes (3) have the
following properties: (i) They are the leading
terms for large s. (ii) In the &u rest frame p~
=0, Rep»=0 [Eq. (4)]. (iii) Only longitudinal u's
occur in the t-channel center of mass. (iv) They
correspond to an evasive solution" of the con-
straint equations. (v) They are nonzero at o.'p 0.
Introducing the complete amplitudes MyiyI", in-
cluding absorption, a,nd performing the Lorentz
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transformation to the w rest frame, we find

p sin )(IM +M
~AX

"
Rep„= cot)(p~/W2,

pl 1=(4IM +I +1M
+ M—+I -cos )(IM +M

I )/2 Z
pate

" (4)

where

P IM, "I =2(IM
I

+IM ) +2IM
I )

-2 2
=32rr4(s, M, )r )do/df, '

h(x, y, z) =x +y2+z2-2xy-2xz —2yz,

and (8(s) is the s-channel scattering angle)

m [6(s,M', ir')]"' . (s)"""
&s[&(&,~', i ')]"'

goo"
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When performing the fit we take all the param-
eters [n, (t), s, ] except P, and P, from the fit to
the reaction rr p —n'e done in Ref. 6. One com-
bination of P, and P, is obtained by fitting the
magnitude of dv/dt, so that we have one arbi-
trary parameter, P,/P„plus the coherent inelas-
tic factor g, which is allowed to vary around a
value )t = 2 by perhaps 30'fo to fit the shape of do/
dt (with no dip) and the density matrix elements.

Since the integrals in Eil, (1) contain a factor
cosnp (n =

I p, -A, '+A, l) which oscillates taster for
larger n, we see that the cut correction is large
(~100'%%uo) for M~ +(n=0), intermediate for M~++(n
= 1), and small (~0) for M ++(n = 2). This is the
mechanism for obtaining a large and positive p„
in this model [Eq. (3)]; for the pole contributions

M+ +M + =0, but after the cut corrections+ +

M+ +M + g0. Note that this effect will per-
sist to high energies. On the other hand, in the
case with no NWS zeros, the destructive inter-
ference between the pole and cut contributions
does not give a dip since da/dt gets contributions
from different amplitudes, the real and imagi-
nary parts of which have dips in different places,
and the resulting curve is smooth. If the ampli-
tudes have NWS zeros, the cut correction is nev-
er sufficient to compensate for the zeros of the
pole terms, and drr/dt has always a deep dip in
this case.

The results of the numerical calculations are
shown in Figs. I and 2 and compared with data
from the Michigan group. ' It did not appear to us

0
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FIG. 2. Same as Fig. 1 for differential cross section.

FIQ. 1. Comparison of the theoretical curves with
experimental data (Ref. 1) at plah= 3.65 Gev/c for the
density matrix elements. The continuous (dashed)
curves show the predictions when the amplitudes do not
vanish (do vanish) at nonsense, wrong-signature points.
The values of the parameters used were u& =0.4+ 1.1t,
~~=1 (QeV), A, =2.25, and P&=P2
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that the experimental results were sufficiently
well established to justify detailed g' fitting of
the data. The best fit was obtained for P, = P,;
the remaining parameters, according to Ref. 6,
were taken to be o.&(t) =0.4+1.1t, s, =l, and y
= 2.25. Note that Rep„ is positive here, as it is
also in the p+B Regge model~ and in the absorp-
tion model for gati(0. 5.' One experimental group"
has reported a positive value, Rep»=+0. 25, with
no errors given, for the reaction m+n-&up at 3.25
GeV/c. It is not clear theoretically how one
could get Rep„&0. The same set of parameters
appears to give the best fit for both cases, when
NWS zeros are and are not present.

It should be emphasized that the p trajectory
obtained in the w p —mon analysis and used here
is significantly different from the usual one; the
latter is an effective trajectory considering both
pole and cut. Thus the dip in the case with NWS
zeros is at n&

= 0. Using up= 0.55+ t gives less
good agreement with data; although the dip is
moved out to -t=0.6, the slope is steep and near
the peak of the data the theoretical curve is a full
order of magnitude too large.

The form of the theory for -t) 0.6 may not be
quantitatively correct because we have neglected
a second cut which will interfere destructively
with the first in the large t region. This cut aris-
es from the first break in the elastic scattering;
so to include it the elastic scattering would be
treated as an appropriate sum of two destructive-
ly interfering, approximately exponential terms.
But the qualitative result that there must be a
break in the slope of do/dt will persist.

We should perhaps mention that the ~-exchange
contribution to the reaction w p - pp cannot be
simply related to the present reaction in a model
such as ours because the pNN vertex has a sig-
nificant tensor coupling, which (it turns out)
gives a large unnatural-parity contribution to the
cut, while the &NN vertex is largely charge cou-
pling, which gives mainly a natural-parity cut
term. Thus in the p production fewer amplitudes
contribute significantly and it may be possible
that the pole-cut interference gives rise to a dip
rather than a break as here. Similarly, the p
and & density matrices will not be the same.

ln summary, we have shown that one can under-
stand the data for the reaction m+n - ~P rather
satisfactorily by a model with a p Regge pole and
its associated cut generated by absorption, if the
amplitudes have no NWS zeros. If the amplitudes
vanish at NWS points, there is probably a further
contribution to this reaction in addition to the p
pole and the associated cuts.

Additional experimental data, designed to clar-
ify the following points, are desirable: (1) It is
important to measure ppp in smaller bins, to de-
tect its shape, and to see if it decreases to small-
er values for -t=0.1. (2) The sign of Rep„must
be established; if Rep„ is negative, some previ-
ously unsuspected mechanism is present. (3)
Cross-section data at larger angles are neces-
sary to see if the expected break is present. It
is not absolutely clear that the theory requires a
break, but there does not appear to be any simple
way to avoid it.
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