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It is shown that in gauge-field models for the electromagnetic and weak hadronic cur-
rents, restrictions are imposed on the way the symmetry is broken if the algebra of
currents is to hold. A modified form of steinberg's second sum rule is proposed, and

relations among vector-meson masses are obtained on the assumption of nonet sym-
metry for the currents.

The spectral-function sum rules derived by
Weinberg' for chiral SU(2)IRSU(2) have been used
to obtain some very good relations. Two out-
standing examples are the p-A, ' mass ratio and

the m+-m mass difference. ' When extended to
chiral SU(3)@SU(3) these sum rules take the
form

The functions p fl"'(p, ') and p ~"'(p') are the
spin-1 and -0 spectral functions for vector or
axial-vector currents. The constants S, and S,
cannot be calculated but the important thing is
that they are equal for both types of currents.

There are several ways of deriving Eqs. (1)
and (2): (i) They follow from current algebra
plus the assumption of c-number Schwinger
terms. '~' Equation (2) requires extra, assump-
tions about the high-momentum behavior of the
currents.

(ii) If SU(3)%SU(3) is a good asymptotic symme-
try, convergence or superconvergence condi-
tions can be imposed on invariant coefficients of
vector and axial-vector propagators leading to
(1) and (2).

(iii) The simplest and most elegant derivation
of the sum rules is provided by the so called al-
gebra-of-fields model' which explicitly gives
equal c-number Schwinger terms for both kinds
of currents.

Equations (1) and (2) already contain symmetry-
breaking effects for spin-1 mesons in the sense
that they can accommodate, for instance, m&

1m', but that is not enough and further symme-

Jp "'(p')dp'=b5 +cdS (3)

In the present note we first want to show that
the reasoning leading to Eq. (3) cannot hold in a
model of gauge fields if the current-algebra rela-
tions are retained at the same time. For the
sake of clarity let us consider only the octet of
vector currents. A Lagrangian with the features
assumed by Okubo has to be of the form

—pm (1+a'd )v
j 2
2 0 Bna (4)

try breakings have to be considered. Note that
one of the results of Eqs. (I) and (2) would be
mfa+ =mp if the scalar (x) excitation is ignored.

Different points of view have been expressed
as to how the symmetry is broken. Okubo point-
ed out' that the Weinberg sum rules are model
dependent and that even if we restrict ourselves
to gauge-field models, there is still freedom in
choosing particular forms of symmetry breaking.

In the original algebra-of-fields model the bare
masses of the gauge fields are assumed to be
equal' which leads to too high a symmetry im-
plied by the second sum rule (2). Since the mass
term in the Lagrangian violates gauge invariance,
Okubo argues that it is reasonable to suppose the
bare masses are not common. By assuming that
the bare masses satisfy a Gell-Mann-Okubo rela-
tion and renormalizing his currents, Okubo ob-
tains a modified second sum rule:
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with

o.P nP (1+D'd )'
0 8aa

If we renormalize the currents by

Q S'" a
m (1+D'd )'"

0 8en
(8)

we find that the spectral functions for the 8's in-
deed satisfy Eqs. (1) and (3). The trouble now is
that the v's do not satisfy the algebra of currents.

To prove our point let us accept the Lagrangianl
(4) and renormalize the currents by' j o =Z~
xv ~. We then obtain the following once-inte-
grated commutators:

n
v -8 v ff-

p p p. v v p 0 o'P/ ]

This Lagrangian leads to the following sum rules
for the spectral functions of the v's:

We could in principle have another term S1"
x (5~05p8+ 5~85p0) in the right-hand side of Eq.
(13), but if only medium-strong symmetry viola-
tions are taken into account, we can show that S,"
=0. Consider for instance the following commu-
tator at equal times:

[j '4), [0',j.'(y)]] = f—[j '4), j.'(y)]

—
2[j0'4), j,.'(y)]. (14)

Mann-Okubo relation for the inverse mass squared
of the vector mesons of the type first considered
by Coleman and Schnitzer. '

Everything we have said so far can be applied
to the octet of axial currents. In particular the
sum rule (12) will be valid for the axial spectral
functions, too. The constants S,' and D should
be the same for both types of currents since Eq.
(2) seems to be a good sum rule for SU(2)RSU(2)."'

To study the ~-y mixing problem we have to
take into account the baryon number current j P.
The sum rule (1) can be extended to the (8+1)
currents (the singlet current is j =K~ j P):

2 = --,'(1+Dd )F F
8nn pv

2 Q Eve,——m v v2 0 7 (10)

the j's obey the current-algebra relations pro-
vided all the Z's are equal:

Z = Z = (f /m 2)2.

Weinberg's first sum rule (1) is still valid, but
instead of (2) we now have

l I

p
p

(4 )dP =(1 Dd )& (12)

Equation (12) together with Eq. (1) gives a Gell-

In order to recover the algebra-of-currents rela-
tions we are forced to put D'=0. Thus a model
based on Lagrangian (4) will not be acceptable.

Symmetry breaking in the kinetic terms of the
Lagrangian does not suffer from these defects.
With the Lagrangian

By the Jacobi identity the left-hand side is equal
to

[0', [j0'(x),j,'(y)]]+ [j,'(y), [0', j0'(Y)]]. (15)

Since jo'Q) is a unitary singlet density, [Q', j,o(x))
= 0. Also [j0'(x), j; (y)] = [j0 (x),j ~ (y)] = 0; non-
zero Schwinger terms in these commutators
would imply the existence in Eq. (13) of still oth-
er terms like Sl '(5~05p3+5n35p0) and Sl
x (g 0gp7+ 5~7'6p0) giving rise to medium-strong
v-p and &u-K* mixing. Thus we must have [j0'(r),
ji'(y)] = 0 and consequently S,"=0.

Oakes and Sakurai" have shown tha. t Eq. (13) is
inconsistent with mass mixing. In the absence of
a crossed (S,"x 0) term in Eq. (13), mass mixing
has to be ruled out. We now show that in the
framework of the algebra of fields, mixing of the
"current" type is the only one compatible with
SU(3) commutation relations and furthermore
leads to Eq. (13). To that effect let us first con-
sider a Lagrangian with mass mixing:

2 =28+2 -~e'm v(v v +v v ). (16)
8 Op, 0 8p.

2, is a symmetric Lagrangian for the octet, ZQ
is the free Lagrangian for the singlet current v&
with a bare mass p.
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[Q,j. (y)]=i(1 5-8,) f j. (y), (17)

with a, P,y=0, 1, ~ ~, 8 and f0ap=0. Equation
(17) agrees with the algebra of currents only if
ql Q

From the Lagrangian (16) we can derive the once-
integrated commutators for the nine renormal-
ized currents:

The arguments given above lead us to a model
Lagrangian with an &-y mixing term of the "cur-
rent" type:

L' =g(10)+1', ~e(F F +F F ), (18)
0 pv pv

where Z(10) is the Lagrangian of Eq. (10) and the
bare masses in Z(10} and 2, are equal. Lagran-
gian (18) is consistent with the SU(3) commuta-
tion relations and from it we can easily derive
Eq. (13) and a modified second sum rule:

2 a 2 aOPO 2 aOP8 a8 PO

J ap
" 1+D(d -6 /v3)-(5 +5 )e'

8nn n8 n0 n8
(19)

Assuming vector-meson dominance of the spectral functions in Eqs. (13) and (19) we get"

~(4m ~
'-m ') = m ' cos'8+ m ' sin'g. (20)

It: is easy to incorporate nonet symmetry into the model with a, Lagrangian (Greek indices run from
0 to 8}:

g = —(1+Dd )F F ~ -~ v v
1 2

8aP gv
2

Q
(21)

The d's are the usual symmetric coefficients for the octet plus

(22)

The Lagrangian (21) leads to the sum rules for the nonet:

f[u 'P p"'( ')+S "'(u')]di '=S,& (23)

ap 2 1+D[d (D/v 3)5 ]-—3D'(5 + 6 )8@a n0 a0 n8
(24)

These sum rules are valid for the nonets of vector and axial-vector currents; the axial currents can
be incorporated into the Lagrangian (21) in a straightforward manner.

The second sum rule Eq. (24) looks simpler if written as

(5 +Dd )fdic'p "'(p') =S 6
ay 8ny yP 2 oP (25)

The new relations among the vector-meson masses are

—,'(2m '+m ') =m sin'8+m 'cos 8,

(1.40)

(26)

m =m ~(3 sin 8-1)+m (3 cos 8-1),
P 47

(1.70) (1.75)
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m '+m '=2m
(d

(2.s9)
(28)
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These relations are not a11 independent; by add-
ing up Eqs. (20) and (26) we get Eq. (25). This
last one is satisfied" even better than the corre-
sponding relation for the direct masses squared
as given by Okubo's nonet model. "

Equation (20) is more general than nonet sym-
metry; its derivation does not require any spe-
cial relation between the symmetry breaking in
the octet and the 0-8 mixing nor an equality be-
tween the octet and singlet bare masses. So we
compute 6 from Eq. (l7) which gives" 8 =28.2'
and verify that Eqs. (26) and (27) are well satis-
fied. " Thus nonet symmetry for the currents
based on Lagrangian (21) seems to be a valid as-
sumption.
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After a brief summary of recently derived general results relating to the mapping of
functions of noncommuting operators on functions of c numbers, equations are given
which describe the time evolution of the c-number equivalents (phase-space representa-
tions) of the density operator and of a Heisenberg operator. The evaluation of time-or-
dered functions of operators by &-number techniques is also briefly discussed.

Since the publication of the pioneering papers
of Wigner, ' Groenewold, and Moyal on the rep-
resentation of quantum-mechanical systems in
terms of generalized phase-space distribution
functions, a considerable use has been made of
such representations in the treatment of various
problems. In the last few years, generalized
phase-space descriptions have become of central
importance in quantum optics, especially in the
study of coherence properties of light' and in the
theory of the laser. ' As is well known, the
phase-space representation of a quantum-me-
chanical system is not unique; it depends on the

rule that is adopted for ordering of functions of
noncommuting operators. We have recently de-
veloped a general technique for a systematic
treatment of problems in this field, based on the
use of certain new class of ordering operators.
In this note we present the phase-space form of
the basic quantum-mechanical equations of mo-
tion, which we have derived by the use of this
technique.

We will first briefly explain the notation and
summarize some of the main results given else-
where. ' We consider a correspondence between
a function +(z, z*) of complex c-number vari-
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