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lar distribution best shows the interference be-
tween A(1405) and A(1520). Figure 2(b) shows
the g/&, ratio that arises primarily from the 8
and D states and their interference, since the I'
amplitudes are small compared with ~ and D.
The curves correspond to the two choices of rel-
ative sign of A(1405) with respect to A(1520). It
is clear from the data that beyond resonance the
two amplitudes must be nearly in phase, as is
required if both resonances are SU(3) singlets.

*Work supported under the auspices of the U. S.
Atomic Energy Commission.

R. Tripp et al. , Nucl. Phys. B3, 10 (1967). An up-
dated version of these SU(3) comparisons of baryon
resonances will appear in the Proceedings of the Four-
teenth International Conference on High Energy Phys-
ics, Vienna, Austria, 1968, to be published.

2The method of employing relative signs for SU(3)
classification was first used by A. Kernan and W.
Smart, Phys. Hev. Letters 17, 832 (1966).

M. Watson, M. Ferro-Luzzi, and R. Tripp, Phys.
Rev. 131, 2248 (1963).

There are no indications that higher partial waves
appear in detectable amounts at the low energies con-
sidered here. We have altered slightly the analysis
method of Ref. 3 by employing the appropriate c.m.
momentum for each channel in the decay widths of the
resonant amplitudes, using a fixed radius of interac-
tion of 1 F in the expression for the centrifugal barri-
er.

5&+ polarizations from this experiment have been
published in R. Bangerter et al. , Phys. Rev. Letters
17, 495 (1966).

6We reverse the convention used in Ref. 3 to make it
more appropriate for discussion of unitary symmetry.

~J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).
From the known branching fractions of A(1520) and

A(1690) (a presumed member of the & octet) there is
reasonably good evidence for some singlet-octet mix-
ing between these two states, as noted by Ref. 1 and by
Q. B. Podh, Phys. Rev. Letters 18, 810 (1967). In
order to alter the sign of the resonant A(1520) ampli-
tude the mixing angle would have to exceed about 45
deg. The estimate for this angle is about 16 deg. For
A(1405) there is evidence for much stronger SU(3)
symmetry breaking, as discussed later in this Letter.
The conclusion of our experiment concerning A(1405)
is that the symmetry breaking is not so severe as to
alter tbe sign of the resonant -amplitude.

J. Kadyk, Y. Oren, Q. Qoldhaber, S. Goldhaber, and
G. Trilling [Phys. Rev. Letters 17, 599 (1966)] have
investigated the Ax channel in the reaction K2 p Am+

at low energies and find that the angular distributions
require a substantial P&3 amplitude whose magnitude is
consistent with the tail of Z(1385). A similar interpre-
tation based on their data and those of Ref. 3 has been
put forward by J. K. Kim, Phys. Rev. Letters 19, 1074
(1967). We may also note that there are at present no
other known P&3 resonances which could contribute a
substantial amplitude in the vicinity of 1520 Mev.

The ratio )(2/()(2) (where (X2) is the expected chi
squared) for the constant-scattering-length parametriz-
ation is 1.23, indicating either that detectable differ-
ences with this constraining parametrization are begin-
ning to appear, or that the data in their preliminary
form have some additional biases. The resonant pa-
rametrizations have yielded ratios of 1.38 for P~3 pa-
rametrized as a resonance and 1.85 for &0& param-
etrized as a resonance.

Particle Data Group, University of California Radia-
tion Laboratory Report No. UCRL-8030 Revised, 1968
(unpublished) .

C. Weil, Phys. Itev. 161, 1682 (1968). For this
A(1405) ratio which should be 1 in exact SU(3) Weil ob-
tains 11.1 by use of the So& scattering lengths of J. K.
Kim fPhys. Rev. Letters 14, 29 (1965)). A more recent
analysis by J. K. Kim and F. von Hippel (to be published)
yields 6.8+1.0 for this ratio.

VENEZIANO FORMULA WITH TRAJECTORIES SPACED BY TWO UNITS*

Stanley Mandelstam
Department of Physics, University of California, Berkeley, California

(Received 30 October 1968)

By representing a scattering amplitude as a sum of terms of the Veneziano type, we
can cancel alternate trajectories and remain with trajectories spaced by two units of an-
gular momentum. This result is obtained without imposing a supplementary condition
and without introducing poles in the Regge residues at nonsense wrong-signature inte-
gers.

Veneziano' has proposed a formula for a scat-
tering amplitude which has Regge asymptotic be-
havior in all channels. The Regge trajectories in
such an amplitude are normally spaced at unit
distance from one another in n, but Veneziano
has proposed a supplementary condition' on the

trajectory parameters which would remove alter-
nate trajectories. A somewhat different formula
for an amplitude with Regge asymptotic behavior
in all channels has been proposed by Virasoro.
Virasoro's amplitude has trajectories spaced by
two units, even though he does not impose a sup-
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plementary condition. On the other hand, the
Regge residues have poles at the negative wrong-
signature integers. Such poles would not be al-
lowed by unitarity, since an amplitude cannot
have cuts in the j plane in the narrow-resonance
approximation.

It is not obvious that one should remove the al-
ternate trajectories, since an amplitude with tra-
jectories spaced by one unit of angular momentum
has no unphysical features. However, one may
want to begin constructing a scattering amplitude
with the minimum number of trajectories; one
would add further trajectories if they are neces-
sitated by the imposition of additional physical
requirements. It is therefore of interest to de-
termine whether or not one requires the odd tra-
jectories.

In this note we wish to show that one can elimi-
nate the alternate trajectories from the Venezi-
ano model by representing the amplitude as a
sum of terms, each of which is similar to the
amplitude of the original model. If no supple-
mentary condition is imposed on the trajectory
parameters, the sum will contain an infinite num-
ber of terms but will converge for all values of s
and t. By imposing a generalization of the Vene-
ziano supplementary condition, one can ensure
that the sum has a finite number of terms and,

by imposing the Veneziano supplementary condi-
tion itself, one restricts the sum to a single
term. Since the formula with an infinite number
of terms has all the desirable properties of the
original Veneziano formula, we have no clear
reason for imposing the Veneziano supplementary
condition, even if we wish to eliminate the alter-
nate trajectories. We shall observe that the for-
mula with an infinite number of terms has extra
terms in its asymptotic expansion along the real
axis, though it has a normal Regge asymptotic
behavior in the complex plane. This may lead
one to keep in mind the possibility of applying the
generalized supplementary condition but, in any

A(s t) =Q a B(—as —b+r -at-b+r)r r (2)

If the summation is taken over positive integers
(including zero), the Regge trajectories of all
terms will coincide, so that no new trajectories
will be introduced. In fact, we shall now show
that it is possible to cancel alternate trajectories
by suitably adjusting the constants a~.

We shall examine the asymptotic expansion of
the series (2) by using the integral representa-
tion of the B function. By doing so we shall also
be able to obtain our modified Veneziano formula
(without alternate trajectories) in closed form.
The integral representation for the beta function
is as follows:

B(—as b, -at-b)—
-at-b-l -as-b-1

dxx (1-x) (3)

The expression on the right of Eq. (2) will there-
fore have the integral representation

case, we see no reason for applying the original
Veneziano supplementary condition.

The Veneziano formula for spinless particles
ls

A(s, t) = B(-as-b, at -b),-
where as +b are the Regge trajectory functions,
assumed linear, and B is the beta function. By
taking the sum of three such terms with the pair
of variables st replaced by su and tu, one can
satisfy crossing in all three variables s, t, and

u, but the simple formula (1) will be sufficient
for our purposes. If the s and t channels are not
identical, the two intercepts b may be different.
The two slopes a must be the same, however,
otherwise Eq. (1) would lead to an increasing ex-
ponential behavior as s or t approached infinity
in the physical region with the scattering angle
fixed and within a certain range.

We now generalize the Veneziano formula by
taking a sum of terms, each of the original form:

A(s, t) =f dxx (1-x) (1+ Q a x (1-x) ).
r=1

(4)

To find the asymptotic behavior in s of the integral on the right of (4), it is convenient to make the
transf ormation

X =1-8
Furthermore, let us replace the variable s by

w= —'z (t —4p. ')2 t

= s + ,'(t 4p')--
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Equation (4) then becomes

A(s, t) = f dye (2sinh —,'y) e {1+Q a e (1-e ) ),
r=1

(6)

where

6= —
2(4 ap, 2+3 b+ I). (7)

We shall begin by examining the behavior of A as s or se approaches -~, since we can then use Eq.
(6) without deforming the path of integration. When the variable m is large and negative, the impor-
tant part of the range of integration on the right of (6) will be ~y ~

«1. The factor eely as well as the ex-
pression within curly brackets will then be equal to unity, but the factor (2 sinh-', y) at b-1 will behave
like y

at b 1. We therefore rewrite (6) as

A(s, t) = f dyy e {(2sinh2y)/y) e {1+Q a e (1-e ) ).
0 rr=1

(8)

The asymptotic behavior in se of the integral on
the right of (8) can be found by using the formula, condition

V -1 QKg
dyy e

= (-aw) I'(v) (Beaut & 0). (9)

{1++ae (1-e ) )rr=1

Since the last three factors of the integrand on
the right of (8) are unity when ~y j «I, we ca.n
immediately write down the result:

at+5
A (s, t) —(-au ) r( at b) u) —--~-.

By expanding the last three factors in (8) as pow-
er series in y and using (9), we can obtain an
asymptotic expansion for A. in the form

(12)

The product of the last two factors of (8) is then

{e'+e '-1)',
which is an even function of y. Having thus de-
fined our power series, we can write Eq. (4) as

A(s, t) = f dxx

A(s, t) —(-au) {Q b u
r=o '

If the Regge trajectories of the amplitude A are
to be spaced by two units instead of by one, the
series in (11) should contain only terms with
even r. This will be the case if the product of
the last three factors in (8) can be expanded in a
power series in y with only even powers. The
facto~ {(2sinh —,'y) jy) a 1 already has this
property, and it is easy to choose constants ar in
such a way that the product of the last two factors
is an even function of y. We simply impose the

x (1—x) {1-x(1—x)), (14)

where the constant 6 is defined by Eq. (7). Equa-
tion (14) provides us with the required formula
for an amplitude having trajectories spaced by
two units. The Veneziano supplementary condi-
tion states that 5 =0 and, if it is fulfilled, our
formula reduces to the original Veneziano formu-
la.

By expanding the last factor of (14) a,s a power
series in x(1—x) and using the integral represen-
tation for the beta function, we can write (14) in
the form (2):

r 6(6-1)~ ~ ~ (6-r +I)
A(s, t) = Q (—1), 8(—as —b+r, at b+r)——

r=O

If we wish we may write Eq. (15) as

A(s, t) =B(-as-b, -at-b) ~E~(-as-b, -at-b, —6; -2(as +at+2b), -2(as +at+2b-1); —,').

(15)

(16)
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Equation (16) will probably not be of much use,
however, since the properties of the generalized
hypergeometric function have not been studied ex-
tensively.

In general we would not expect the scattering
amplitude to be represented by a single expres-
sion (14) or (15), since a sum of such terms with
as+b+1 and at+b+1 replaced by as+5+1-2r
and at+5+1-2r would be equally satisfactory.
The coefficients of these terms might be deter-
mined from a multichannel bootstrap in which the
resonances of the scattering amplitude are also
the external particles. We do not wish to exam-
ine such questions in this Letter,' we merely
mention them to emphasize that the complete
series on the right of (15) should not be taken too
seriously. By taking the first 2r-I terms of (15)
we can ensure that the first r odd trajectories
are absent, and that should be sufficient for prac-
tical purposes. One could alternatively work
with the closed form (14), but to do so would

probably be considerably more complicated than
to use a few terms of (15). On the other hand,
the closed form (14) is useful for investigating
general properties of the scattering amplitude
and, in particular, for investigating the asymp-
totic behavior.

Qur next step is in fact to re-examine the as-

A (s, t) =A'"(s, f) +A"'(s, t), (17)

where A'" is the contribution from! x!«1 or!x!
» 1 in the integral (14), and A'" is the contribu-
tion from x = e+»/3. We find that

ymptotic behavior of (14) as s approaches infini-
ty. We had previously restricted ourselves to
the limit s - - and, further, we had only exam-
ined the asymptotic behavior of the individual
terms obtained by expanding the last factor,
which may be different from the asymptotic be-
havior of the complete amplitude. We shall not
reproduce the detailed calculation, which is fair-
ly simple and straightforward and is similar to
the calculation leading to Eq. (10). Depending on
the manner in which s approaches infinity, and
depending on the variable which is held constant
during the process, we may have to deform the
path of integration in (14). We obtain contribu-
tions to the asymptotic behavior from the regions
!x!«1 and! x!»1, and also from the regions x
= e~'~/3, where the expression in the curly
brackets of (14) vanishes. When s approaches in-
finity in any direction other than along the posi-
tive real axis, the results are exactly the same
as in the original Venezi3no model, and we need
not repeat them here. When s approaches infini-
ty along the positive real axis, we obtain two
contr ibutions:

A (s, t) =((as+& +1) I'(-at-b) sine(a&+b+ I+at+b + I))/sinn(as+b+ 1), s -~, & const; (18a)
(1) at+b

A (s, t) = f(as+b + 1) I (-au-b)] ines(au+b + 1)/sinn(as+b+ 1), s -~, u const;
(1) au+&

A (s, t)-(—2.3 (as+b+1) I'(5+1) sinvrb cossw[2(as +b+1)+(at+b+1)——', &-?])/
(2) -5-1

~ 1

i swn(as+b+ I), s -~.

(18b)

(18c)

The formulas (18a) and (18b) are exactly the same as the formulas we would have obtained from the
ordinary Veneziano model with the supplementary condition. In fact, if we have a formula with an st
term and an su term, so that we can replace u by t in (18b) and add it to (18a), we obtain the result

A (s, f) = (as+b+1) I'(-at-b) isn't[&( as+&+I) +at +b+ I]]/si nn2(as +&I+), s-~, t const. (19)
(1) at+5 ~ 1 l

This resembles a Regge asymptotic formula, ex-
cept that the continuous imaginary part is re-
placed by a sum of delta functions at as+b + 1
= 2r.

The extra term (18c) decreases exponentially
when s goes to infinity in a complex direction,
but oscillates when s goes to infinity along the
real axis. If s goes to infinity at fixed t, the per-
iod of these oscillations is 3/a, instead of 1/a as
it was with (18b).

If the constant &, defined by (7), is a positive

integer, the series (15) will terminate. The sin-
gularity at x = e+»/3 in the integrand of (14) will
be absent, and the term (18c) in the asymptotic
formula becomes zero. We must emphasize that
there is no reason of principle why a term (18c)
should be excluded. It does not invalidate the
Regge asymptotic formula when s approaches in-
finity in a complex direction, and the Veneziano
model does not in any case satisfy the Regge as-
ymptotic formula on the real axis, except in an
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average sense. It may possibly turn out that a
term (18c) is undesirable from the point of view
of satisfying bootstrap restrictions. If so, one
would impose the supplementary condition

4aj[L'+ 3b = —1+2n, (20)

where n is a positive integer. The special case
n=0 corresponds to the Veneziano condition. The
large period of oscillation of the term (18c) may
mean that the finite-energy sum rules are badly
violated if the cutoff is low. This is perhaps the
reason why results obtained from the Veneziano
supplementary condition agree with those found

by using finite-energy sum rules.
We should like to acknowledge helpful discus-

sions with G. F. Chew, J. Shapiro, and J. Yellin.
Note added in proof. —It has been found by Sha-

piro (private communication) that the formula
(14) can give negative residues to certain of the
lower resonances. This re-emphasizes the fact
that the complete amplitude must consist of a
sum of such terms with as+8 + 1 and at+ b+ 1 re-
placed by as+8 + 1-2x and at+6 + 1-2r.

*Research supported in part by the Air Force Office
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United States Air Force, under AFOSR Grant No. AF-
AFOS3,-68-1471.

Q. Veneziano, Nuovo Cimento 57A, 190 (1968).
See Veneziano, Ref. 1, Eq. (7).
M. A. Virasoro, to be pub1ished.

ERRATA

ENHANCED SUPERCONDUCTIVITY IN LAY-
ERED METALLIC FILMS. Myron Strongin,
O. F. Kammerer, J. E. Crow, R. D. Parks,
D. H. Douglass, Jr. , and M. A. Jensen [Phys.
Rev. Letters 21, 1320 (1968)].

It should be noted that a correlation between
hardness and T~ has been previously made by
Matthias. ' Matthias points out that hardness is
at a minimum near 4Nb3Al:1Nb30e, the composi-
tion where T~ reaches 21 K. Also, for the Zr-
Os system the maximum T~ occurs where the
ductility is a maximum.

'B. T. Matthias, Phys. Letters 25A, 226 (&967).

K d PARTIAL CROSS SECTIONS AROUND 1

BeV/c. Allen A. Hirata, Charles G. Wohl, Ger
son Goldhaber, and George H. Trilling [Phys.
Rev. Letters ~21 1485 (1968)].

In Eq. (6), the fourth reaction should read K+n
-K' m+n; the seventh should read K+n -K+m p.
In Eq. (8), the first reaction on the right-hand
side should read K+n -K n+n.

1728


