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found to be important. The assignment of shell
numbers had to be changed for some lines. The
results will be published elsewhere.
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The delocalization of ionic-charge affects the cen-

tral cell correction which is used to explain the rela-
tively large ionization energies of some donors and ac-
ceptors. For 0 in GaP, ED=0.893 eV, a very large
value. Perhaps there is a relationship between the oc-
tupole moment of an ion and the deviation of its binding
energy from the effective-mass value.

~The displacements of neighboring lines from their
calculated values must be considered in making this
comparison.
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When a current density S and a magnetic induction 8 are in the plane of a layer thin
enough to quantize the motion perpendicular to the plane of the layer, the Hall voltage
arises from deformation of the quantized states. If the layer is asymmetric, the Hall
voltage will in general contain a term in &, as well as a term j.n J && B. Numerical re-
sults are given for s-type inversion layers on (100) silicon surfaces.

When a thin layer carries a current in the plane
of the layer in the presence of a magnetic field
perpendicular to the current and parallel to the
plane of the layer, the Hall voltage appears
across the small dimension of the layer. We call
this the transverse Hall effect; it is Sondheim-
er's' case Cl, which was treated by MacDonald
and Sarginsonl without considering quantization
of the states.

We consider for the first time the effect of
quantization on the transverse Hall effect. The
Hall voltage in this case arises from a deforma-
tion of the quantized states in the presence of a
magnetic field. We limit the analysis to the elec-
tric quantum limit, ' in which all the carriers are
in the lowest electronic subband associated with
the direction perpendicular to the plane of the
layer, -but move as free carriers in the plane of
the layer. A perturbation treatment is given for
a general case, and more detailed results, in-
cluding a self-consistent field treatment, are

Z =Z "+@'k '/2m +k'k '/2m
n x 1 y 2

g = P (z) exp(ik x + ik y), n = 0, I, 2, ~ ~ ~,

(2)

where n labels the subbands. In the presence of
a magnetic induction By in the y direction, the
Hamiltonian has the additional term

a = b zP /m + b 'z'/2m,
1 y x 1 y 1'

where we use the gauge A = (B&z, 0, 0), mks units,
and b =eB .

The perturbed energy to second order ln by ls

given for inversion layers on silicon surfaces.
Let electrons of charge -e move in a layer

whose states are quantized in the z direction by
a potential V(z), and Iet their energies and wave
functions in the absence of a magnetic field be
given by the solutions of the effective-mass equa-
tion

[P '/2m +P '/2m +P '/2m +V(z)]t/r=E(, (I)x 1 y 2 z 3
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where z» =(filz lC&), the f; are the normalized functions of Eq. (3), and the primed sum excludes
vanishing energy denominators. Except for the last term, which gives a change in the effective mass
in the x direction, this expression agrees with the first-order perturbation theory result in Appendix

1687



VOLUME 21, NUMBER 25 PHYSICAL REVIEW LETTERS 16 DECEMBER 1968

A of Stern and Howard. '
The wave function is also changed by the magnetic field. The average value of z in the perturbed

state with quantum number n and wave vector k in the x direction is
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where Ez& =Ei" -E&". Note that if the potential V(z) in Eq. (1) has inversion symmetry, so that the
states have either even or odd parity, all the terms in by vanish, and only the linear term remains.

In the electric quantum limit, only the lowest electronic subband, with n =0, is occupied. We can
obtain an approximate result for this case by replacing the energy denominators by a constant D, and

by using the closure relation to simplify the numerators. Then (6) becomes

(3@ Q g 2/m 2D2) (z -3zm z + 2z ~)
x y 1 00 00 00 QQ

(7)

The Hall voltage is directly related to the de-
formation of the charge distribution. A change
4z in the average value of z for the carriers pro-
duces a voltage change across the layer given by

V =Nq Az/e, (8)

=c JB +c8~,
1 x'

(9)

where Jx = -¹vd, and ~d is the electron drift ve-
locity in the x direction. Note that J has the
dimensions current per unit length. An approxi-
mate value for the coefficient c, is obtained from
the foregoing results if we replace the energy
denominator D in (7) by the energy separation E„
between the bottoms of the lowest and first excit-
ed subbands. We find

c, = -(2e/~)(z'«-z«')/E, . (10)

For comparison, we can estimate a "classi-

where ~ is the permittivity of the layer; N is the
number of carriers per unit area in the deformed
states; and q is their charge, which is -e in our
case. The quantum-mechanical Hall voltage ob-
tained from perturbation theory for the electric
quantum limit is thus given by (8), where hz is
the change in the average value of z from the val-
ue z~ in the absence of a magnetic field to the
value given by (6) or (7). To average over the oc-
cupied values of the wave vector R, we use the ef-
fective-mass change indicated by (5), and shift
the Fermi ellipse along the kx axis by an amount
which gives the prescribed current density Jx in
the layer.

The Hall voltage (8) can be expanded in a series
whose leading terms are

cal" value for c~ by neglecting the difference be-
tween Hall and drift mobilities, assuming the
layer to have thickness z~, and making the un-
warranted ~' assumption that the Hall field is
uniform throughout the layer. Then we find that

The coefficient c, has the same dimensions as
the conventional Hall coefficient, since N/z«has
dimensions of carriers per unit volume. How-

ever, for an unsymmetrical layer 1.ike an inver-
sion layer, the term containing cz in (9) can make
a significant contribution to the Hall voltage.
This term is independent of J .

Values for the quantities which appear in Eqs.
(10) and (11) have been calculated for inversion
layers with several values of electron concentra-
tion N on silicon (100) surfaces with two different
acceptor concentrations N~. We use a dielectric
constant of 11.8, and transverse and longitudinal
masses of the conduction-band minima [corre
sponding to m, =m, and to m„respectively, in
Eq. (1)] equal to 0.19m and 0.98m, respectively.
The values of z«, z'«, and E» were obtained
from numerical self-consistent solutions of the
Schrodinger equation (1) and Poisson's equation
for the quantized states at absolute zero with no
magnetic field. The results are shown in Table I.

The perturbation-theory results in Eqs. (5) and
(6) are not exact even to the order shown because
they have not taken into account the change in the
potential V(z) in (1) which results from the mag-
netic-field-induced deformation of the states. To
obtain fully self-consistent results which take
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Table I. Perturbation-theory results for silicon inversion layers. N& is the bulk-acceptor concentration, and
N is the inversion-layer electron concentration. E~p is the energy separation between the bottoms of the lowest
and the first excited subbands, and zpp and z pp are the expectation values of z and z in the lowest subband; they
are obtained from self-consistent field calculations at zero magnetic field and zero absolute temperature.
Hall coefficient c~ is obtained via Eqs. (9)-(11).

N

(102P m-') (m 2)

10
(meV)

00
(A) Z pp/Z pp

2 2

c1
(m3/C)

C
1,class
(m3/C )

1 x10~4

1 x 10~5

3 x10~5

1 x10"
1 x10'4
1 x10"

4.31
5.17
6.56
9.83
6.74
7.50

60.9
50.5
40.6
29.4
49.1
43.8

1.204
1.229
1.251
1.274
1.202
1.218

-3.4 x10
-2.2 x10
-1.2 x 10-'
-4.6 x10
—1.4 x10
-1.1 x10-'

-3.8 x10 4

-3.2 x10-'
-8.4 x10
-1.8 x10
-3.1 x10-4
-2.7 x10-'

this into account, the Schrodinger equation and
Poisson's equation were solved in the presence
of a magnetic induction B&. We obtained 4~ by
averaging over the occupied values of k as de-
scribed in the paragraph following (8) and calcu-
lated the Hall voltage from Eq. (8). The coeffici-
ents c, and cs in (9), and the coefficient e, which
gives the effective-mass change

m (0)/m (B ) =1-e B s,
1 y 2y'

were obtained from the fully self-consistent cal-
culations and are given in Table II.

The approximate results for c, in Table I are
seen to agree fairly well with the more accurate
results in Table II. Values of e~ obtained from
Eq. (5) using the same approximations as those
that lead to Eq. (10) agree quite well with the ful-
ly self-consistent values in Table II.

As a numerical example, we consider silicon
with bulk acceptor concentration N& =10"/m'
(which corresponds to a room-temperature re-
sistivity of about 125 0 cm), inversion-layer

electron concentration N = 10"/mm, a magnetic
induction of 20 kG = 2 Wb/mm, and current densi-
ties of +1 and -1 A/m. The calculated average
values of z for these two cases are 50.615 and
50.238 A, respectively, compared with 50.486 A

in zero magnetic field, and the respective Hall
voltages are -20 and +38 p V. The effective mass
in the k~ direction is increased by about a factor
1.0075. At higher magnetic fields, the effective
mass varies appreciably with k~, indicating the
importance of higher order terms in Eq. (5) as
well as in the other expansions given here.

There do not appear to be any measurements
on Si inversion layers which can be directly com-
pared with our results. The conductance of such
layers for the magnetic field and current con-
figuration considered here has been measured by
Tansal, Fowler, and Cotellessa. ' The changes
they find are much too large to be accounted for
by a simple addition of the Hall voltage as esti-
mated here to the gate voltage or the substrate
bias. Their results, like ours, show both a J&&B

term and a B2 term. Additional contributions to

Table II. Results of fully self-consistent calculations. The values were obtained by fitting results for a range
of values of magnetic induction and current density. They are expected to be correct within about 10% for p& -3
'aj|tb/m2 and for current densities corresponding to drift velocities &104 m/sec. The symbols not in Table I are c2,
from Eq. (9), and e2, from Eq. (12).
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82
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1 x10~4

1 x].QL~

3 x10"
1 x10"
1 x10~4
1 x10"

-3.0 x10
-1.4 x10
-6.4 x10
-1.9 x10
-1.3 x10
-8.1 x10-6

5.6 x10
2.3x10 '
1.9 x 10
0.6 x10
1.9 x10
1.1x 10

3.2 x 10
1.9 x10
1.0 x10
3.5 x10 4

1.2 x 10
1.0 x 10
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the Hall voltage can come from the depletion lay-
er, since any carriers in that layer will have
drift velocities comparable with those in the in-
version layer and can be treated classically. At
very low temperatures the number of such elec-
trons is extremely small, and the considerations
of Gurvich' may apply. The characteristic time
for establishing a steady-state Hall voltage across
the depletion layer is the dielectric relaxation
time for the layer, which can be long enough to
make possible an experimental separation of the
slow depletion-layer contribution and the fast
inversion-layer contribution.

At temperatures or inversion-layer concentra-
tions high enough that more than one electronic
subband is appreciably populated, ' transfer of
carriers between the subbands becomes impor-
tant, and the simple considerations of this paper
are no longer sufficient. Work is underway to
extend the present results beyond the electric
quantum limit, and to more general current,
magnetic field, and surface orientations. When
many subbands are occupied, the conventional
theory'~' should be applicable.

I am grateful to S. Tansal and A. B. Fowler for
many discussions of their experiments and their

relation to this work, and to R. S. Allgaier,
M. H. Brodsky, W. E. Howard, G. Lasher, P. J.
Price, and P. J. Stiles for helpful comments.
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The magnon density of states of ferromagnetic GdCl3 in an external magnetic field has
been observed by means of high-resolution optical spectroscopy. The relevant transi-
tions arise from a single-ion transition mechanism, hut the initial (magnon) and in
some cases the final (exciton) states of the transitions are shown to have measurable
dispersion, contrary to the usual description of rare-earth salts.

We have observed in the optical absorption
spectrum of ferromagnetic GdC13, in an external
magnetic field, transitions originating from a
singly excited magnon whose line shapes are suf-
ficiently resolved to yield information about the
magnon density of states. To our knowledge, this
is the first spectroscopic observation of the mag-
non dispersion of either a ferromagnet or a rare-
earth salt. As a result, it is evident that high-
resolution optical spectroscopy when used in con-
junction with external magnetic fields can be use-
ful in studying the magnon structure of materials
with weak magnetic interactions.

In recent years magnons have been observed in

the optical spectra of several antiferromagnetic
transition-metal compounds' for which the mag-
netic interactions are one to two orders of magni-
tude stronger than that of the rare earths. These
transitions always involve an exchange-coupled
mechanism in which the magnon and exciton are
created or destroyed simultaneously on different
sites of the crystal. They therefore appear as
spin-assisted sidebands to the pure electronic
transitions of the metallic ion. On the contrary,
the transitions originating from a magnon state
of GdCl, arise from a single-ion transition mech-
anism. However, the excited states of the system
can not always be classified simply as single-ion
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