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PHOTOMAGNETIC EFFECT IN A CHALCOGENIDE SPINEL

W. Lems, P. J. Rijnierse, P. F. Bongers, and U. Enz’
Philips Research Laboratories, N. V. Philips’ Gloeilampenfabrieken, Eindhoven, The Netherlands
(Received 8 November 1968)

Photomagnetic change in the initial permeability has been investigated in Ga-doped
CdCr,Se,. A simple model is shown to account satisfactorily for the experimental data.

Direct influence of electromagnetic (infrared)
radiation on magnetic properties was recently
discovered in Si-doped yttrium iron garnet (YIG)
by Teale and Temple,* who observed an appreci-
able change in the ferromagnetic resonance field.
Subsequently, Enz and van der Heide? reported
large changes in the initial permeability and the
coercive force. We wish to present similar re-
sults observed in a rather different material, the
chalcogenide spinel CdCr,Se, which is a semicon-
ductor and ferromagnetic below T =130°K.* An
n-type conducting single-crystal sample, of com-
position Cdj_,Ga,CrgSeq with x =0.015, was cut
into a ring of approximately 1-mm diameter,
the axis of the ring being a (111) direction. The
initial permeability © was measured by record-
ing the output in response to a low-field 10-kHz
input current.

The behavior of yu with irradiation is shown in
Fig. 1(a). After cooling in the dark to 77°K, we
observed an initial permeability ugz~320. Upon
illumination with a “white” thermal light source
(intensity 1072 W/cm? at the surface of the sam-
ple for the curve shown) u decreased steeply to
a much lower stationary value pg=~ 160. After
some time the light was switched off, and u re-
turned comparatively slowly to its original level
tg. In the same figure we show a similar plot
recorded at 4,2°K: Qualitatively the behavior is
similar, but the recovery process is several or-
ders of magnitude slower than at 77°K. If the re-
covery process is thermally activated, a rough
estimate of the activation energy involved gives
0.005 eV.

Both the stationary value ug, reached after ir-
radiating for some time, and the rate of change
of u when the light is switched on were found to
depend on the light intensity 7, . In Fig. 1(b)—and
likewise in the following discussions —we consid-
er the change in the “stiffness” u ™! instead of
that in u, since various properties like aniso-
tropy and magnetostriction contribute additively
to the stiffness. The light-induced change (A “'l)s
=pug~t-ug"! is given as a function of I, by the
experimental points (dots) in Fig. 1(b). For
small intensities it increases sharply with I,

leveling off for values of I, larger than 5x107*
W/cm?®. Saturation is reached for I, roughly
1072 W/cm?. (The light sensitivity of CdCr,Se,
is several orders of magnitude higher than that
of Si-doped YIG.?)

A preliminary investigation of the spectral de-
pendence of the effect indicates that only photons
of wavelength less than approximately 1.1 um
are active; this roughly coincides with the nor-
mal absorption edge of CdCr,Se, which at 77°K
is found* at 1 um. We also measured the per-
meability, demagnetizing the sample after the
low u level was reached, or applying a strong
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FIG. 1. Experimental results. (a) Initial permeabil-
ity 1 as function of time ¢ for T=77 and 4.2°K. Light
intensity 102 W/em?, (b) Stationary change in stiff-
ness (Au"i)s versus light intensity I, at 77°K. Dots:
experimental points; drawn curve (calculated): 8x 108/
[1+ (1+8.84x 10741 )17,
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dc bias field during illumination so that no Bloch
walls could be present. Essentially the same
change in y was recorded as in the previous ex-
periments. This shows that the hypothesis of
changes local to domain walls must be rejected
and strongly suggests that there is a change in
permeability throughout the material.

To describe the results obtained we adopt a
model similar to that proposed by Enz? for Si-
doped YIG. There one assumes that a localized
Fe?* ion can be in a crystal site adjacent to a
Si** ion (type I) or in a remote position (type II),
the contribution of the Fe?* to the magnetic prop-
erties being different for the two types of site.
Since the energy of electrons in type-I positions
is lower, nearly all electrons (and thus Fe?*
ions) are at type-I sites after cooling in the dark.
The effect is then ascribed to a light-induced
electron transfer, causing Fe?' to move from
type-I to type-II sites.

For the case of CdCr,Se, we will also employ
a two-center model: Type I is a more stable
center, from which a less stable type-II center
can be formed by electron transfer. Centers of
type I could be filled Ga donors consisting of a
Ga®* ion associated with a more or less local-
ized Cr?* ion. The nature of type-II centers is
not known.

In order to calculate the effect of irradiation
quantitatively, two assumptions have to be made:

(i) The change in stiffness Ap~*=p" ~py7 ' is
proportional to the density n of type-II centers
formed (which is equal to the density of disso-
ciated type-I centers):

Ap~r=Cn. (1)

(ii) During and after illumination, electrons
will be transferred back from type-II to empty
type-I centers by thermal activation, thus dimin-
ishing »n; the assumption of random recombina-
tion leads to a recombination rate proportional
to n%. Both assumptions seem to be justified as
long as the density n, of Ga atoms is small,
which is the case for the crystal under consider-
ation.

As the rate of dissociation of the Ga-donor
centers is proportional to the photon intensity
and to the density (n,—n) of remaining type-I cen-
ters, the rate equation for » becomes

dn/dt =—an®+BI(n,—n). (2)

Here I is the intensity of photons active in the
dissociation process, and o and 8 are propor-
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tionality constants; for a thermally activated re-
combination with activation energy G, a will be
proportional to exp(~G/kT). If at time £ =0 the
light is switched on and n=0 for ¢<0, then z (and
thus Ap~?!) increases as

n=2ny/[1+(1+4an,/BI)*?
x coth{3BI(1 + 4any/B1)**}]. (3)

After a long enough time n reaches a stationary
value

ns=2n [1+(1+4an0/BI)1’2]'1, (4)

0
showing that ng ~ng if 4an,/BI< 1, i.e., for high
light intensity or low recombination rate (as at
very low temperature). Now if the light is
switched off at ¢/ =0, say, and n=ng for ¢'<0,
we obtain

n=ns/(1+anst'). (5)

Let us examine our experimental results to
check whether they conform to the above expres-
sions. First consider the stiffness change (Ap~%)g
as a function of L, as shown in Fig. 1(b). We see
from Eqs. (1) and (4) that the constants C and a/
B describe this curve completely. Calculating
these constants from the saturation level (Iw —~ )
and from one other experimental point, we ob-
tain the drawn curve in Fig. 1(b), which agrees
very well with the experimental points.

Next, let us consider the recovery process af-
ter the light is switched off, as in Fig. 1(a). Ac-
cording to Egs. (1) and (5) a plot of (Ap~Y) "' vs ¢
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FIG. 2. Inverse of the change in stiffness as a func-
tion of time after switching off light of intensity 1072
W/cm? (77°K). Crosses: experimental points; drawn
curve (calculated): 10%x (0.25+0.12¢).
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FIG. 3. Change in stiffness as a function of time af-
ter switching on light of intensity 9% 10~ W/cm? (77
°K). Dots: experimental points; drawn curve (calcu-
lated): 7.08x1073/[1+ 3.5 coth(0.2¢)].

should yield a straight line:
@au™)=t=1/Cn_+(a/C)t. (6)

In Fig. 2 just such a plot is shown: The experi-
mental points lie on a straight line to a very
good approximation. Equation (6) also shows
that the slope of this line should be independent
of the stationary level ng from which the recov-
ery starts. This is indeed the case: We cannot
show this in Fig. 2, since most experimental
points coincide on the scale of that figure. From
the slope a/C of the line and from the value C
calculated above we find «; this leads directly
to B since a/B was also calculated before.
Finally we examine the decrease in u after the
light is switched on. As a test we have in Fig. 3
plotted Au~* vs ¢ for a light intensity I, not used

in the calculations above. The dots are experi-
mental points: The drawn curve represents
Au~ ! according to Egs. (1) and (3) with the values
of C, a, and B calculated above. A slight devia-
tion for small ¢ might be due to inaccuracy in de-
termining the point £ =0. In general we observe

a very satisfactory agreement between experi-
ment and calculations.

The proposed model does not specify how the
difference in contribution to magnetic properties
of centers of type I and II arises, what exactly is
the mechanism by which light induces a dissocia-
tion of a type-I center, or how electrons, once
at a type-II center, move back to Ga donors.
Further investigation of each of these points
should eventually lead to a quantitative predic-
tion of the constants C, a, and B, in that order.
However, the excellent agreement between mod-
el calculations and experimental results strong-
ly suggests that Eq. (2) correctly describes the
essential features of the process, thus justifying
the assumed model.

We wish to thank Mr. H. Logmans for his as-
sistance in the measurements.
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ELECTRIC DIPOLE MOMENT OF THE CESIUM ATOM.
A NEW UPPER LIMIT TO THE ELECTRIC DIPOLE MOMENT OF THE ELECTRON*
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Brandeis University, Waltham, Massachusetts
(Received 12 November 1968)

An atomic-beam magnetic-resonance apparatus has been used in a test of parity and
time-reversal invariance in atomic systems. An upper limit to the permanent electric
dipole moment of the cesium atom, |dggl<8.7x107%% cm, has been set. This result
leads to an upper limit to the electric dipole moment of the electron, ld, |<3x1072%% cm.

An atomic-beam magnetic-resonance technique
has been used to set a new upper limit to the
electric dipole moment (EDM) of the cesium at-
om. This upper limit leads in turn to a new up-
per limit to the EDM of the electron which is a

factor of 10 lower than any limit previously re-
ported.

The importance of these experiments lies in
the fact that the observation of an EDM in an
atomic system of well-defined angular momen-
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