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of the Brillouin zone where they could undergo
direct recombination with holes in the valence
band. A direct-recombination model such as
this could also explain the temperature variation
of the recombination time if one assumes that
the activation energy corresponds to the depth of
the valley minima of the lowest conduction band.

If this were the situation, at very high tempera-
tures one should measure the direct recombina-
tion time while at very low temperatures one
could (ideally) measure the indirect recombina-
tion time, because all the electrons would be at
the edges of the Brillouin zone. The estimates
of valley depth given by Kahn and Leyendecker'
were between 0.02 and 0.05 eV, which is consid-
erably lower than our activation energy of 0.105
eV. However, recent experimental determina-
tion of electronic effective mass by Parker and
Yahia indicate a greater curvature of the valley
minima than was estimated by Kahn and Leyen-
decker, suggesting that the valley depth may be
larger than what was estimated.

A somewhat more straightforward interpreta-
tion of the temperature dependence of the results
would be to assume that there are impurity
states at about 0.105 eV below the conduction
band which trap a larger percentage of the elec-
trons as the temperature is lowered. One prob-
lem with this interpretation is the fact that ex-
perimental results showed no significant change

0
in the induced absorption at 6328 A as the tem-
perature was lowered from room temperature to
145 K Since, at the lower temperature, a great

majority of the electrons would have to be in the
traps, this interpretation would require that the
absorption cross section of the electron in the
trap and that of the free carrier be the same.
This is possible although it would seem to be an
unlikely coincidence.

Other explanations for the observed recombina-
tion behavior are also conceivable at this stage
and more thorough photoconductivity and fluores-
cence measurements will be required to further
clarify the choice of models.

It is a pleasure to acknowledge several fruit-
ful discussions with Dr. Albert Rose. The au-
thors are also grateful for consultations and sug-
gestions of various other members of the staff
at RCA Laboratories and for the experimental
assistance of Mr. L. Levin.

~W. S. Baer, Phys. Rev. 144, 734 (1966).
2J. A. Noland, Phys. Rev. 94, 724 (1954).
3Noland, Ref. 2; S. B. Levin et al. , J. Opt. Soc. Am.

45, 737 (1955}; M. Cardona, Phys. Rev. 140, A651
(1965); R. C. Casella, Phys. Rev. 154, 743 (1967);
M. I. Cohen and R. F. Blunt, Phys. Rev. 168, 929
(1968).

H. W. Gandy, Phys. Rev. 113, 795 (1959).
5A. H. Kahn and A. J. Leyendecker, Phys. Rev. 135,

A1221 (1964).
B. W. Faughnan and Z. J. Kiss, Phys. Rev. Letters

21 1331 (1968).
J. J. Amodei, dissertation, University of Pennsyl-

vania, 1968 (unpublished).
D. Parker and J. Yahia, Phys. Rev. 169, 605 (1968).

EXCITON-PHONON BOUND STATE: A NEW QUASIPARTICLE*

Y. Toyozawaf and J. Hermansonf
Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois

(Received 12 August 1968)

We point out that an exciton and an optical phonon may form a bound state which moves
through the crystal. Calculated binding energies and oscillator strengths for this new

quasiparticle lend support to recent suggestions that strong exciton-phonon mixing is
present in the optical spectra of some ionic crystals.

In the optical spectra of some ionic crystals
such as ZnQ, MgQ and BeQ, and TlCl and

TlBr, the separation of the first exciton peak
and a higher energy companion is less than the
energy e, of the LO phonon by a fraction b. -10$.
Also, spectral lines associated with the bound
exciton in AgBr:I,4 although observed at energy
separations close to ao in emission, occur at

separations nearly 30$ smaller than ao in ab-
sorption. These facts suggest that (1) the com-
panion structure may be associated with phonon
sidebands a.nd (2) final-state interaction between
the exciton and phonon leads to a negative energy
shift of this structure. To help clarify the situa-
tion, we present model calculations which dem-
onstrate the possibility of bound states of the ex-
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citon-phonon system, which are free to move
through the crystal. The attractive force is as-
cribed to virtual transitions among internal
states of the exciton.

A phonon sideband corresponds to simultaneous
excitation of an exciton and a phonon with respec-
tive energies Eo(k) and wo( —k) and momenta k and
—k (the incident photon momentum may be ne-
glected). We omit LO-phonon dispersion in com-
parison with that of the exciton, and assume that
Eo(k) has a minimum at k =0. A second-order
perturbation calculation of sideband shape pre-
dicts a continuum which starts at E,(0)+ ~0, ris-
ing with the three halves power of the energy,
and extends over the energy range of a few times

The peak is at E,(0) +(1+v)~„where v de-
pends upon coupling constants and effective
masses and is of order unity. The real discrep-
ancy between lowest order perturbation theory
and the observations cited above is therefore (6
+v)&0 rather than the nominal shift b,ao.

As long as perturbation theory converges, cal-
~

culated exciton but not phonon energies are re-
normalized. ' However, the observed energy
shift may be associated with a bound state of the
exciton-phonon system, in which case the per-
turbation expansion diverges. We now derive,
from first principles, an attractive force which
leads to splitoff bound states consistent with the
interpretation of existing optical data.

Consider an electron and a hole with effective
masses m~ and mI„ interacting with each other
by Coulomb's law and with the LO-phonon field
according to the Frohlich interaction. By intro-
ducing the exciton center-of-mass coordinate R
and relative coordinate r, and K, the total mo-
mentum (a constant of motion) of the exciton-
phonon system, the wave function can be written
as 4'(b, r, R) = exp[i(K —P q qb q~bq) R]4 (b, r) = Sk-,
in terms of creation and annihilation operators
bqf and bq for phonons of wave vector q. This
unitary operator S, which was first introduced
by Lee, Low, and Pines' in the polaron problem,
leads to the transformed Hamiltonian'

S 'HS=(K-g qb b )'/2M++ ~ b b +E +p'/2p 1/~ r+-Q iiV p (r)b +H.c.),q q Oq q g o q qq
where E& is the energy gap and M and p are exciton translational and reduced masses respectively.
The electron-phonon coupling coefficient Vq

——[2wmO(/co
'

ws ')]' —q ', z0 and zs are the optical and
static dielectric constants, and p-(r) =—exp(issq. r) —exp( —is@q. r) with s~ b

=—mp z/(ms+m@).
7

We begin with the Hartree ground state' C(b, r) = y(r)U(b) ~ 0), where
~
0) denotes the vacuum. Using

the Lee-Low-Pines canonical transformation' U(b) =exp/g (d-b-1 d- b )),—where d- is the displace-qqqq*q-q
ment of the qth oscillator, we minimize the system energy with respect to y(r) and dq. As in Ref. 7,
the result is a set of self-consistent equations; the lowest energy solution [d-', &0(r)] has energy
Eo(K). A complete set of internal exciton states yA (one of which is y, ) with energies EA(K) are de-
termined~ in the static field dq~o'. Upon introducing creation-annihilation operators aAf and aA for
these zero-order states, the effective Hamiltonian may be written as:—U 'S-'IfSp=g E (K)a 'ta +Q [u —(1—q)K. q/M+q'/2M]b tb

eff A X A. A. q 0 q q

+g,(iv (p,-b,p )a ~,b +H.c.],AA' q qAA.
'

AA.
' q00 A. A.

'
q

where q=Q-~d-@'~'q/K and p-A&i is the electron-hole density matrix in the cpA representation. The
omitted terms make no contribution to the energy within the approximation used below. As a result of
eliminating R the exciton recoil energy appears in the phonon term.

Intraband scattering ~ =~' vanishes for the exciton ground state ~ =0 due to our self-consistent re-
normalization. Consequently, the second-order energy for this state has the energy denominator w0
+eA (AWO), where &A=EA(K)-EA(K) is the excitation energy of the exciton internal motion. For the
one-phonon state, the second-order energy consists of the same term, corresponding to phonon emis-
sion, and an additional term due to phonon absorption with the energy denominator -~0+ e~. Although
the second term is of order N ' ' for each plane-wave phonon state, it is possible to construct a co-
herent state with finite negative energy shift due to this term. The effect will be appreciable if the
electron-hole binding energy eB is as small as ~0, for then a host of exciton states ~ &0 are nearly
degenerate with the one-phonon state.

To treat this near-resonant situation eB/&uO-1 we use the following Ansatz for the next excited state
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above the exciton ground state ko:

x=(Z»-t')&0~1 o&+ g f ~ ~lo&.
qq -0 A. A.

q
' Xo

Eliminating the zero-phonon amplitude t~ from the simultaneous Schrodinger equations for s and t, we
get the eigenvalue equation for the one-phonon amplitude s:

[&u -(1—q)K q/M+q'/2M —cu]s +Q (q q'./M)d ~'d, "'*s
q qq' q q' q'

(e -w) V V,p p, s, =p,
q q' qOX q'A. O q'

~g0, q'
(4)

where we have measured the energy & from Eo.
We confine ourselves to K=O, and study only s-

like solutions of Eq. (4). Then the second term
vanishes because d-"' is also s-like for K=O.q
The third term is a nonlocal interaction between
the exciton and phonon, due to virtual transitions
among internal exciton states; at energies x & e&,
for all A. g0, the potential is attractive. Since
Lo-phonon dispersion has been neglected, the
kinetic energy of relative motion is simply q'/
2M. Competition between the potential and kinet-
ic energy terms in Eq. (4) determines whether a
bound solution co &mo exists.

Three approaches were used to study the solu-
tions of Eq. (4). In each case we took as yo a 1s
hydrogenic orbital with "Bohr" radius a = K'/p, in
terms of an effective dielectric constant x'. The
two-level model (I), in which only the Is and 2s
exciton states a,re taken into account, allows us
to solve Eq. (4) exactly, since the integral ker-
nel is separable. In general this model under-
estimates exciton-phonon binding energy since it
limits internal degrees of freedom; however, it
is quite useful for studying resonance effects be-
tween two nea, rly degenerate states. To estimate
contributions from the higher excited states of
the exciton we have employed a second model
(II), based on the closure relation

I

xg0 qpa q'Zp q q' 00 qoo q'00'

after replacing the energy e~ in the denominator
of (4) by a suitable average value Z. The lowest
eigenstate was calculated by the variational
method with a trial function sq =q/(u'+q')'. By
putting ~ = E2s we clearly overestimate the strength
of exciton-phonon attraction and can calculate
(within the limitations imposed by our choice of
trial function) an upper bound for the binding en-

I

ergy. Finally (III), we can replace the intracta-
ble sum QX &ptxyx in (3) by a single trial func-
tion g(r), assuming an effective Coulomb poten-
tial -I/~'r Ch. oosing P(r) =c[3-(I+P)~/a]
xexp( pr/—a) which is orthogona, l to the ls exciton
ground state irrespective of the variational pa-
rameter P, we have calculated the lowest eigen-
value of (4). Model I is obtained by putting P =-,'-;
minimization of e occurs for P) —,', or more lo-
calized orbitals g which increase the potential
energy. Throughout the calculations, we have
put pqgr) =exp(iq r)-1, assuming m@»me.

The bound-state solutions ~ & uo are shown in
Fig. 1(a) as a function of eB/&up for various val-
ues of the coupling parameter y -=~'(~0 '-zs ')
and the effective-mass parameter q= p4/ M.-For
each pair of parameter values (y, q) three curves
show the variation of our theoretical energies
among the models described in the last para-
gr aph. Comparison of I and II illustrates the
contribution of higher exciton states; since I
underestimates and II overestimates this contri-
bution, the real situation should be somewhere
between. Method III includes some of the effects
of higher states but does not require the approxi-
mation of energy denominators. We expect this
method to be most satisfactory, ' however, the
variational calculations have been carried out
only for the special cases r]= 0 (M-~) and ~ = vo.
The results for the latter, shown in Fig. 1(b),
determine the existence criterion of the bound
state.

The oscillator strength of the transition be-
tween the ground state of the crystal and the ex-
citon-phonon bound state has been calculated al-
so for models I and III. The dipole operator P
= POPXQX(0) [a&~ +a&] has transition-matrix ele-
ments

&OI&l+&=&q (0)Z(-d-"'*~-)+ Z f q (0)}exp(-E2ld-'I')
q

0 q q A. A.
'

qzg0 q
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FIG. 1. (a) The energy of the exciton-phonon bound
state, calculated by methods I, II, and III, as a func-
tion of eB/co0 for various values of y and g. (b) Exis-
tence criterion for the bound state. (c) Intensity ratio
of the bound state and zero-phonon state for the case
q=0.

where 4 =SUy. Since d ' ' is spherically sym-q"'
metric for K=O, only s-like states are optically
active. The oscillator strength, proportional to
1(0I&I+)i', contains a one-phonon part due to the
first term in (5), a zero-phonon part from the
second term, and an interference term. The
quantity g-id-I'i' in the exponent of the Debye-

q q
Wailer factor gives the relative transition rate
of the one- and zero-phonon lines in the absence
of interband scattering ~ g A. '. Calculated intensi-
ty ratios of the bound state and zero-phonon line
are given in Fig. 1(c) as a function of eB/m0 and

y, for the simplest case g=O. Preliminary cal-
culations for mobile states g) 0 yield smaller
oscillator strengths consistent with the weaker
binding of these states. For large eB/~0»1 our
results are not accurate, since the exciton Bohr
radius is comparable with the lattice parameter
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and phase-space integrals for the oscillator
strength (and binding energy) are overestimated.
We note that the results for methods I and III are
qualitatively similar but differ in magnitude due
to the more localized excited state used in III,
which leads to stronger exciton-phonon binding.
Also, the binding energies and oscillator strengths
increase monotonically with coupling strength y.

It should be noted that even at absolute zero
temperature the exciton-phonon bound state (with
K =0) has a finite probability of decaying into an
ordinary exciton state by emitting an acoustic
phonon with wave vector K = (2M&)'i'. The life-
time broadening due to this decay is estimated to
be of the order of EgMK'/2wpuk, where Ed is
the deformation potential for the exciton, u the
sound velocity, and p the density of the crystal.
It is smaller than uo by one order of magnitude.
This means that at low temperatures the exciton-
phonon bound state can be observed as a distinct
peak in the absorption spectra.

As seen in Fig. 1(b) the exciton-phonon bound
state exists for y-1 if the effective-mass ratio
mI, /m, (or me/mp, ) is large or eg is near ~,.
For &B appreciably less than 0 our solution cor-
responds to an excited state of the exciton, re-
normalized by virtual emission and reabsorption
of LO phonons. This is evident in Fig. 1(c),
where the intensity ratio decreases rapidly as
&B decreases, tending to a small value charac-
teristic of the higher exciton state. The question
whether there is, above &B„aquasibound state of
predominantly one-phonon character requires
further study. It should also be noted that apart
from minor modifications to be made, we can de-
scribe the exciton bound to an imperfection, by
putting p = 0 in our theory, since there is no exci-
ton recoil.

In connection with the optical data cited'~ in
the introduction, our approximate calculations
are consistent with the following observations:
(i) Negative energy shifts have been reported for
higher energy peaks only in those crystals for
which e~ and ~0 are not very different; (ii) the
shift is around 10% for intrinsic (mobile) exci-
tons but somewhat larger for bound excitons;
(iii) the intensity ratio with the first exciton line
is larger for bound excitons; (iv) the oscillator
strength of the higher energy peak is larger than
expected for pure electronic excited states of the
exciton. Consequently, our results lend support
to the suggestions of Refs. 1-3 that strong exci-
ton-phonon mixing may be present in the spectra
of several ionic crystals with shallow excitons.
The broad sideband corresponding to the creation
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of a free pair of an exciton and an LO phonon
seems to be obscured in these crystals because
of its overlap with the continuum of interband
transitions which has larger intensity.

We wish to thank Professor F. C. Brown and
Mr. R. Z. Bachrach for allowing us to see their
optical data before publication and for stimulating
and helpful discussions. Thanks are also due
Professor W. C. Walker and Professor H. Kan-
zaki for communicating the data of Refs. 2 and 4,
respectively, in advance of publication.
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The Hartree approximation is taken as our starting

point because it leads to tractable mathematics when
we treat zero- and one-phonon states simultaneously.
By raising the approximation to higher order, the zero-
phonon state would approach Haken s solution but the
essential features of our results would be unchanged,
since we are concerned with the energy difference be-
tween this state and the one-phonon state. See H. Hak-
en, in Polarons and Exeitons, edited by C. G. Kuper
and G. D. Whitfield (Plenum Press, Inc. , New York,
1963), p. 295.

The set of states yg includes ionized as well as
bound states of the exeiton.
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By simultaneously sending through a quartz sample two coherent light beams having a
beat frequency equal to the frequency of the 207-cm-~ optical mode of the quartz, we
have been able to generate coherent optical phonons with an estimated power of 100 W.

photon 1-photon 2- phonon, (2)

we see that a very efficient way to produce co-
herent phonons without threshold is to send si-
multaneously two coherent light beams with fre-
quencies v, and v, through a Raman-active crys-
tal; if phonons having a frequency v= v, -v2 can

The emission of Stokes light by Raman and
Brillouin scattering can be described as'

photon 1 -phonon+ photon 2.

When a low-power laser beam of photons 1 (fre-
quency v, ) is propagating in a material medium,
incoherent photons 2 (v, ) and incoherent phonons
(v= v, —v, ) are generated. The higher the pump-
ing power, the greater the number of spontane-
ous photons 2 created will be. Finally, a thresh-
old is reached and the phenomenon becomes
stimulated at a still higher pumping power. At

this state, both photons 2 and phonons then be-
come coherent.

If relation (1) is written as

be propagated, a beat will be driven in the crys-
tal. The effect is then immediately stimulated.

An energy P, is thus transferred from the
light beam of higher frequency to the elastic
wave and the secondary light beam, which re-
ceive, respectively, powers p and P„where P„
P„and P are related by the Manley-Rowe equa-
tions P,/v, =P~/v~ =P/v. As v, and vm are higher
than v by several orders of magnitude, an easy
way for measuring the intensity of the produced
phonons is to measure P, or P2.

For the Brillouin effect, this two-beam meth-
od has been theoretically studied by Kastler'
and Kroll'; Caddes and co-workers have pro-
duced acoustical phonons in this way. On the
other hand Papoular and Chartier4&' have sug-
gested generalizing this method to the Raman ef-
fect, and we think we are the first to have pro-
duced coherent optical phonons in this way, viz. ,
by beating two light beams of appropriate fre-
quencies.

The experimental setup is given in Fig. 1.


