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A quantum mechanical theory of superconducting tunnel junctions including noise is
developed. The theory is applied to the calculation of the frequency pulling, linewidth
of the radiation, and voltage power spectrum in the ac Josephson effect.

The tunneling of Cooper pairs between super-
conductors was first discussed by Josephson. '
He derived the phenomenological equations gov-
erning the behavior of junctions, and this classi-
cal description is quite adequate to describe a
large variety of phenomena. However, for a dis-
cussion of noise and related problems it is nec-
essary to extend the theory. In this Letter we
discuss a quantum mechanical theory of tunneling
including noise and apply it to the calculation of
the frequency pulling, linewidth, and voltage
power spectrum in the ac Josephson effect.

We use a model in which Cooper pairs are add-
ed to the superconductor forming the left-hand
side of the tunnel junction from a large normal
electron reservoir. Cooper pairs are removed
from the right-hand superconductor at the same
rate by another normal electron reservoir. This
approximates driving the tunnel junction from a
constant-current source which is the usual ex-
perimental arrangement. The connection be-
tween the normal electron reservoir and the
superconductor is described by a Hamiltonian

H =Qg(b +d +d +b ),1 ke k n n k'

where bk+ =ck&+c k)+ creates a Cooper pair in
the left-hand superconductor, d~ annihilates two
electrons in the normal reservoir, and g is a
constant. There is a similar term for the right-
hand superconductor.

The equations of motion of the operators de-
scribing the superconductors are obtained by
eliminating the reservoirs to second order in

perturbation theory. This procedure, as well as
the derivation of the noise sources in the equa-
tions of motion, has been discussed by Lax2 and
others. We will give only the results of these
calculations. We suppose that the temperature
is sufficiently low so that there are no normal
excitations in the superconductors, and we con-
sider only the paired states lying in the region
p. + h ~D around the Fermi energy. For simplic-
ity in presentation here, we will neglect the ki-
netic energy of the paired states and adopt the
strong-coupling model of a superconductor. '
This only introduces certain qualitative changes
and does not alter the final results. We then in-
troduce the operators for the left-hand supercon-
ductor:

"'=~~be'

R =2+ (1-2b +b ). (2)

These operators behave like spin operators. In
particular the total charge on the superconductor
is 2eRz, where e is the electron charge. R and
R+ are related to the off-diagonal long-range or-
der in the superconductor. There is another set
of operators 8, S+, and S~ for the right-hand
superconductor.

After elimination of the reservoir coordinates,
the equations of motion of these operators are

R = -i[R,H ]-2nR R+ 2P"RR +F, (3)0 z z

R = i[R,H ] 2e -R R +2P-R R +F +, (4)

R = -i[R,H ]+(n+ a+)R+R
z z' 0

-(P+ P+)RR'+F, (5)Rz'
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where H, is the Hamiltonian of the superconduc-
tor and

n =Q g Jo dug d +(-u))e

P=Q g f, du(d +d (-u))e

and p is the chemical potential of the supercon-
ductor. The F represent noise sources whose
properties can be calculated from the equations
of motion of operators quadratic in the R, R+,
and R~. The most important result required
here is that

(FR (ti)FR (t2))

= [(n+ n+)R+R+ (p+ p+)RR ]5(ti -t 2). (7)

When there is a voltage across the supercon-
ductors, pairs tunnel with the emission of a pho-
ton. The photons are emitted into a mode of the
superconducting cavity which we describe by the
operator b, b+. The tunneling is described by a
Hamiltonian

H = T(RS+b++ SR+b),

where we have made the usual rotating-wave ap-
proximation. Introducing (8) into (3)-(5) and
combining the equation for R with the corre-
sponding equation for S+, we obtain our working
equations

TRDSo

i(v-0) --,' y
(14)

Substituting this in (9) and equating imaginary
and real parts to zero gives two equations. The
first determines the frequency v:

&ye+ l"0
~y+ I"

T'ylR l(R R '+S S ')
(~-~)'+ -'i

The second equation determines the dc current-
voltage characteristic and after some rearrange-
ment is

decay constant of the cavity. The properties of
the noise sources f for the cavity have been giv-
en by Lax'.

&f(t,)f'(t, )) = r(.-+1)5(t,-t,),

&f(t,)f(t,)&=r-b(t, t.-),

where n is the density of blackbody radiation at
the frequency O. In the present case we set n =0.
We need not consider the equation for Sz as
charge is conserved, Rz+Sz =0.

The operators in (9)-(11)are considered to be
mean values so that their order is unimportant.
We get the steady state solution of (9)-(11)by
neglecting the noise sources and assuming a time
dependence of b and RS+ of e ~~~. Using the sub-
script 0 for steady-state values from (11),

B(RS+)/Bt = [-in+ (A + A )R ]RSL R z

-2i Tb R (RR++ SS+)+ E +,RS+' (9)

T rlRoSo
(v-0)'+ —,'y' (i7)

BR /Bt

=-ALRR+-iT(RS+b+ SR+b)+F-R

Bb/Bt = (-iA- —,'y)b iTRS +f . -
(10)

In these equations we have retained only the real
part &L, of 2(PI, +-nf. ) (see below). We distin-
guish quantities on the left-hand side and right-
hand side by the subscripts L and R. The Jo-
sephson frequency is h &u = 2(pL -pR) and is re-
lated to the voltage across the barrier and the
charge by

2e V 4e2
(d=

~ =-@ R, (12)

where C is the capacitance of the barrier. In

(ll), 0 is the passive cavity frequency and —,r the

The last form in (17) is consistent with energy
conservation. Equation (15) determines the fre-
quency pulling. To estimate I' we write it in the
form

J (R R++S S +)IR00 00 &0

lR,s,+l'r ——
2e (is)

From the BCS theory R0 =2N(0)L&ln2ar~/n&,
where 6& is the energy gap and N(0) is the densi-
ty of states. For a superconducting volume of
10 ' cm, Ro =10". Then using 4=10 mA, V=20
pV, and C = 10 cm, we find 1 =10 ' sec '. A
typical cavity y is 10 sec '; so the frequency
pulling is small.

Assuming that we are well above threshold, we
linerarize (9)-(ll) about the steady operating
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point by writing

-ivt u+ipb=b e e

+ + -ivt x+i 8
RS =RS e e, and R =R e

0 0 z z0

([y(t) —(P(0) ]') 16e' Jg2 (20)

where RD is the dynamical resistance (BJ/BV)
The line is I.orentzian in shape and D is the full
width at half-maximum. In this model there is
an equal contribution to D from f and ER in (19).

The physical origin of this linewidth lies in the
shot noise associated with photons leaving the
cavity. This shot noise is also reflected in the
pair tunneling current and gives rise to voltage
fluctuations. Thus for low frequencies, from
the small-oscillation analysis, the spectrum of
voltage fluctuations is

(V V ) =4eJR '/(1+~'~'),
(d -CO D

(21)

where

27R C
T'=(R C+y ')'-

g2+ 1 27

and is characteristic of shot noise. There is no
shot noise of the form (21) in the dc Josephson
effect. Using the power spectrum (21) and the
fact that the oscillator is frequency modulated'
leads exactly to (20).

A similar procedure has been used by I ax~ in
connection with lasers. The change x in the am-
plitude of RS+ is very small and will be neglect-
ed. It is essential to retain the coupling between

y, 8, and q as they are strongly coupled through
the term ~ in (9); i.e., the oscillator is frequen-
cy modulated. This small-osci1. 1ation analysis
shows that there is one neutral mode of oscilla-
tion corresponding to changing the overall phase
of the coupled systems. The system is stable
provided the detuning h, = Q- v & 0. At v = Q it be-
comes unstable. Eliminating all the variables
except y from the small-oscillation equations,
we find to a good approximation that

spy f 1 y' , f 4e'
Bt bo yA 4 bo 8 z

=Im —+ ——A' Re—+ R~R ~ (19)

Using the properties of the noise sources, the
radiation linewidth due to phase diffusion after
some rearrangement is

At finite temperatures the contribution to D
from the cavity shot noise is multiplied by (2~
+1), where n is the number of blackbody photons
in the cavity at the cavity-mall temperature.
Thus at finite temperatures

Se', e V
L) =, JR coth-—+1 . (22)

& p'& =
I b01' if yR C»1,

if yR C «1.2e'
SCy

(23)

In the first case the radiation intensity has a sec-
ond moment appropriate to coherent radiation,
and in the second case the distribution is broad-
ened.

Finally it should be mentioned that a frequency
shift can occur in (9) through the imaginary part
of (P n) This-is .a typical Lamb shift due to the
reservoir interaction and is proportional to the
voltage. We estimate this shift from (6) by as-
suming the normal electron reservoir is a free-
electron gas and taking d& =a& ~a& &

where the a
I

are free-electron annihilation operators. The
sums over q are cut off in energy at jL(. ~k+D. A

simple calculation gives a frequency shift of (41/
~) ln2 which is a small. A more complete ac-
count of this work will be published elsewhere.

The author is grateful to M. Lax, P. Lee, and
M. Scully for useful discussions. This work was
begun while the author was visiting Massachusetts
Institute of Technology, Cambridge, Massachu-
setts.
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This expression is in good agreement with ex-
periment. For J=5 mA, R&=1 mQ, V=20 jLf.V,
and T=1.5'K, which are values appropriate for a
Sn junction, we find D/2v =19 kc/sec. The ex-
perimental value is about 15 kc/sec. ' Also D0/
RD has a minimum value 4e'y/h when the detun-
ing ~ = ~2. R~ is approximately a minimum here.
This is also in accord with the experimental da-
ta. Close to T~ it is necessary to include the
voltage fluctuations due to the normal component
of the tunneling current and the linewidth increas-
es rapidly. This will be discussed elsewhere.

The small-oscillation analysis also gives in-
formation on the intensity fluctuations of the ra-
diation. If P=b+b ~bo(', then it is found for a
= —'y that
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We develop a quantitative nonlinear theory of sound amplification by carrier drift in
piezoelectric semiconductors and predict an effect of sound automodulation, i.e. , quasi-
periodical variation of the intensity of monochromatic sound due to the nonlinear inter-
action of the sound with its own acoustoelectric field.

We have developed a quantitative small-signal
nonlinear theory of sound amplification by car-
rier drift in homogenous piezoelectric semicon-
ductors. The form of the stationary distribution
of the sound intensity along the sample is investi-
gated. Under certain circumstances the station-
ary distribution becomes unstable, and as the re-
sult, automodulation of the ultrasonic signal
propagating through the sample may take place;
i.e., the sound intensity begins to oscillate. The
conditions for onset of the oscillation are investi-
gated. We give here a brief account of the re-
sults obtained. The details of our calculation
will be published elsewhere.

Due to nonlinear interactions the ultrasonic at-
tenuation (or amplification) becomes dependent
on the sound intensity I. There are two sources
of such dependence. First, the amplification
constant at any point of the sample depends on
the sound intensity at the same point. Second, it
depends upon the dc field E at this point. To
first approximation in the sound intensity I the
expression for the attenuation constant is

r=r, +r I+(er, /sE, )(E-E,).
Here 10 is the linear-attenuation constant, E0
= U/L, L is the sample length, and U is the volt-
age along sample which is supposed to be fixed,
independent of the sound intensity.

The total current through any cross section of
the sample should be constant as the consequence
of the charge conservation. The total current
density j is the sum of the conduction current
oP (where oo is the conductivity in the absence
of sound) and of the acoustoelectric current j~c

=FI, which is proportional in the first approxi-
mation to the sound intensity. (The sound being
amplified, its intensity is coordinate dependent. )
The electric field should be redistributed along
the sample to maintain the constancy of the total
current. The dependence of the electric field on
the sound intensity can be derived from the equa-
tion

j= o,E+I'I = o,E, + (E/L), I(x')dx'.L
(2)

Thus the expression for the nonlinear-attenua-
tion constant including the terms of first order
in sound intensity has the form

r=r, +r,I+r, (l/L) f I(x)dx,
L

(3)

where

The second and the third terms in Eq. (3) will be
referred to as the local nonlinear term and the
nonlocal nonlinear term, respectively. As has
been pointed out by many authors, ~ the nonlocal
nonlinear interaction acts as a feedback mecha-
nism. ' On account of this mechanism the intensi-
ty of sound at the points that are nearer to the
input end of the crystal depends on the intensity
of sound at more distant points.

The expression (1) for the nonlinear attenuation
consta, nt was previously obtained by Gurevich and
Laikhtman' and Katilius. ~ They concluded that
the constant 1, as well as r„depending on rela-
tive role of different nonlinearities, pa, rticula, rly
those produced by traps, can be of any sign, and
their values may vary over a wide range. It is
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