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SURFACE-PLASMON RESONANCE EFFECT IN GRATING DIFFRACTION*

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, 1' and R. N. Hamm
Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

(Received 26 August 1968)

Anomalies found in the intensity of p-polarized light from concave diffraction gratings
have been analyzed in terms of an interaction between the incoming photon and a surface-
plasmon resonance in the grating surface. There is clear evidence for zone gaps in the
dispersion curves which we have constructed for surface plasmons in Al and Au. The
phenomena reported here may be regarded as manifestations of second- and possibly
higher-order plasmon-grating interactions.

Anomalies in the intensity of light diffracted
from a grating were first observed by Wood' in
1902. These anomalies, which are most impor-
tant for light polarized with its electric vector
perpendicular to the grating rulings, have been
studied both experimentally and theoretically by
many workers. Recent treatments have been
given by Hessel and Oliner' and Hagglund and
Sellberg. ' A classical theoretical analysis was
given some time ago by Fano. 4

We have studied the polarization of light by
concave diffraction gratings in the wavelength re-
gion 3000 to 16 000 A and present an explanation
in terms of a surface-plasmon resonance.

Measurements were made of the intensity of
the diffracted light for polarization with the elec-
tric vector parallel and perpendicular to the
plane of incidence which, in turn, was perpendic-
ular to the grating rulings. These measurements
were made on a Bausch and Lomb replica grating
ruled with 600 lines jmm and having a blaze angle
of 2'35'. The grating was coated with a vacuum-
evaporated layer of aluminum. For the other
measurements an additional layer of gold was
evaporated over the aluminum. Measurements
were made using a Polaroid HN-22 sheet polariz-
er and a tungsten lamp. The angle between the
source and detector (i.e. , between the incident
and diffracted beam) was varied from 80' to 2'.
Data taken in the wavelength region 5000 to
15 000 A using a PbS detector are shown in Fig.
1. The angle (9 shown is half the angle between
the incident and diffracted beam. The intensity
of P-polarized light (electric vector in the plane
of incidence) exhibits peaks that shift in wave-
length as the angle 8 is varied. The s component
varies smoothly with wavelength for all angles of
incidence. These data, along with data taken in
the region 3000 to 8000 A using an EMI 9558 BQ
photomultiplier, were used to plot Fig. 2 for both
the Al and Au coatings. The photon energy at
which the peaks occurred is plotted as a function
of the angle 6.
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FIG. 1. p-polarized spectra of tungsten lamp dif-
fracted by concave grating for varying angles between
entrance and exit slits.

Teng and Stern' have been able to construct a
dispersion curve for the surface plasmon in alu-
minum by observing dips in the spectrum of light
specularly reflected from an aluminum-coated
grating and from peaks in the light emitted from
the same grating bombarded by fast electrons.
Both of these effects may be regarded as occur-
ring in first order in the plasmon-grating inter-
action. The phenomena which we report here, on
the other hand, may be regarded as manifesta-
tion of second-order and possibly higher order
processes.

We assume that the surface plasmon is only
slightly perturbed by the presence of density
variations due to the grating structure. For ex-
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FIG. 2. Position of peaks in the P-polarized spectra
as a function of angle 0. Dashed line, Au.

ample, the dispersion curve of the plasmon on a
grating surface does not seem to be greatly dif-
ferent from that of a plasmon on a plane surface
of the same material, at least in the long-wave-
length region. In this view, the resonances ob-
served in first-order diffraction may be discussed
in terms of the graph shown in Fig. 3(a) in which
we depict a second-order process. Here a pho-
ton of wave vector k in the region outside of the
grating is incident upon the grating surface,
which if perfectly plane would only specularly re-
flect the photon; a surface plasmon could not be

excited under these conditions. Because there is
a periodic density variation in the region of the
surface, the grating may absorb momentum in a
direction normal to the rulings and in multiples
of 2v8/5, where 5 is the distance between rul-
ings. We shall assume that the average grating
surface lies in the x-y plane, that the gratings
are parallel to the y axis, and that the wave vec-
tor k lies in the x-z plane. Thus at the lower
vertex in the graph on Fig. 3(a) surface plasmon
with x momentum equal to 2vln/5 plus the x com-
ponent of the momentum of the incident photon
may be created. Here n is a positive or negative
integer. For a free-electron-like metal, the in-
teraction Hamiltonian giving rise to this process
may be written as an integral over the half-space
containing the grating,

H'= —(td 2/4nc2) f 'A 'A f(r)d7;
P ph sp

where A h is the vector potential operator of
the photon, Asp is the vector potential operator
of the surface plasmon, and f(r) is the fractional
variation due to the grating structure of the con-
duction-electron density from its value n, deep in
the metal. The volume plasma frequency is giv-
en by ~~ = [4wnoe'/mj'~'. In order for its effect
to be observed in a first-order diffraction direc-
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FIG. 3. (a) Feynman diagram of photon-surface-plasmon interaction. (b) Dispersion curve of surface plasmons
in Al and Au.
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tion, the plasmon must, in general, get rid of
some of the x momentum which it acquired from
the grating by making a second encounter, indi-
cated by the top vertex, in which a photon of
wave vector k' is emitted. The compound pro-
cess proceeds through an intermediate surface-
plasmon state; it is well known that when the en-
ergy of an intermediate quantum state is nearly
the same as that of the initial state, a resonance
in the cross section for the compound process
will occur. Thus, from the theory of quantum
resonant intermediate states one could expect
that &„, the probability for the process under
discussion, might have the typical I orentzian
form

v = Q(~ (&u/c) sinn+ (2wn/5) ~),

where & is the angle between k and the normal to
the grating surface. Thus if the wavelength cor-
responding to the center of a resonance of given
order n is measured as a function of the angle of
incidence n, one may construct the Q(tc) curve
by graphical methods.

The angle of incidence & is given as a function
of the angle ~ by the grating equation

(2)

(3)

Using this relation in Eq. (2), the dispersion
curve Q(z) was constructed and is shown in Fig.
3(b). Note that the different symbols correspond
to specified values on n in the equation for &z,
and that each specified value of n, in turn, cor-

valid in the neighborhood of the frequency for
which the denominator has its minimum. ' In this
expression ~n=&~+2m/&, ~y =c~k~, Q(g~) and
Z(~ &~) are the eigenfrequency and damping rate,
respectively, of a surface plasmon with wave
vector w, and I'„ is proportional to a certain
average of the nth Fourier coefficient of the elec-
tronic density variation in the neighborhood of the
grating surface. Possible higher order process-
es giving rise to a probability function containing
a product of several resonance denominators
may also be important in this connection. '

The condition. for intermediate-state resonance
is that the energy of the virtual surface plasmon
should be equal to the energy of the incoming
photon, i.e., ~y= Q(~n); dropping the subscript
on y,

responds to a branch in the experimental data
(Fig. 2). For comparison, theoretical dispersion
curves for the surface plasmon on a smooth
plane surface were calculated from'

e ~(Q) x/2

c 1+E

using &,(~), the real part of the dielectric con-
stants of aluminum and gold, from the data of
Ehrenreich, Philipp, and Segall and of Schultz, "
and are shown as the dashed curves in Fig. 3(b).
There is good agreement for Au, and for Al the
agreement is good for quantum energies up to
-2 eV. For energies larger than 2 eV in Al, the
experimental points lie below the theoretical
curve defined by Eq. (4). These deviations may
be due to (a) the effect of the grating structure,
(b) depolarization effects due to oxidation of the
surface, or (c) possible differences between the
optical properties of the aluminum of the grating
surface and those reported in Ref. 10 for alumi-
num.

The second-order self-energy of a surface
plasmon involves the excitation of virtual plas-
mons with momenta differing from the momen-
tum of the plasmon under consideration by mul-
tiples of 27lh/&. Thus discontinuities or zone
gaps in the self-energy and, consequently, in the
dispersion relation, are to be expected at values
of t& equal to integer multiples of m/5. Inspection
of Fig. 3(b) shows clear indication of discontinui-
ties at 57T/5 and Ger/5 for Au, but for Al these in-
dications are less clear.

We plan to attempt a detailed perturbation theo-
retic analysis of the data and to investigate the
dispersion curves of other metals.
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SPECTROSCOPIC FACTORS FROM (d, P) REACTIONS
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The recent communication by Garcia and Pearson, of the same title as this note, is
examined and shown to contain an error. The conclusions drawn by Garcia and Pearson
are therefore incorrect.

We refer to a recent Letter by Garcia and
Pearson in which the authors comment on the
Butler-Hewitt-McKellar-May (BHMM) analysis
of (d, P) reactions. ' ' They purport to show that
the factor (1-S) ' multiplying the cross section
in this method does not in fact exist and is the
result of an error. It is, however, the Garcia-
Pearson conclusion that can be reached only
through a mathematical error; it appears neces-
sary to point this out explicitly.

We use the same notation as Ref. 4 and, as in
Ref. 1, consider the case of one bound state only;
extension to several bound states is straightfor-
ward.

The direct matrix element for the stripping re-
action X(d,p)Y is written

M(0, k )=&/ A 4 (X, n)~V ~A 4+&
p p c0 ' np cd

tion uo(X). One then has

M(0, k )=SxsaM(0, k ),

where S is the spectroscopic factor for the final
state and

M(o, k )=&( u (X)F (~)IV IA ~ '&.'P P 0 0 nP cd
After expansion in terms of the complete set of

states 4';(X, n) of nucleus I' it is found' that

(1-S)M(0,k ) = fdk &o~k &M(k, k ), (2)'p n n n'p'
where

M(k, k )=&( A +(k, X, n)IV I4„+&.n' P P c n' '
nP d

We now briefly reproduce the Garcia-Pearson
argument. The wave equation for +d+ is used to
rewrite (3) in the form

where gp describes proton elastic scattering,
is the neutron-proton interaction, @d is the

full many-body deuteron wave function, and +,(X,
n) is the wave function of the final state. The op-
erator Ac projects onto the core-state wave func-

k )=&4 A @(k,X,&)I(IJ-E)l~„+&, (4)n' p p c n'

where H is the full Hamiltonian without the V„p
interaction and E is the total energy. The sudden
approximation ~' is now substituted for +d+ so
that the right-hand side of (2) becomes

t(4~)'"I'&/(2~)"'~j Jdk dk 'u(k ', k )&0Ik &&q (k ) ~g +(k ')&&A ~(k, X, n) ~A 4'(9', X n)&.P P d n P P P P c n c
However,

&01Q'&=S&0IQ'&+ fdk &Olk )&A +(k, X, n) (A 4(Q', X, n)&

so that (5) reduces to

(l —S)M
with

M =[(4m)"'a'X/(2w)"'m] fdk '&0~Q'&&/ (k )~g +(k ')).
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