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ALIGNMENT-INVERSION WALLS IN NEMATIC LIQUID CRYSTALS
IN THE PRESENCE OF A MAGNETIC FIELD
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It is shown theoretically that nematic liquid crystals in magnetic fields may display
alignment inversion walls partially similar to Bloch and Neel walls in ferromagnetics.

We wish to present theoretical considerations
indicating that in a magnetic field nematic liquid
crystals may display sharp, planar texture ir-
regularities. The structures would loosely re-
semble the mell-known Bloch and Neel walls of
ferromagnetic materials. Their essential fea-
ture is the gradual reversal of the alignment
within a thin boundary layer between uniformly
oriented regions. Some of the observations re-
cently made by Williams' on nematic P-azoxyani-
sole can probably be explained in terms of these
structures which we will call alignment inversion
walls.

Nematic liquid crystals are uniaxial materials.
Their preferred axis may vary from place to
place, being in general a continuous function of
position. The axis coincides with the long axes
of the molecules (or rather with the average ori-
entation of these axes). No nematic materials
are known, at least to date, which possess a spon-
taneous magnetic or electric polarization. The
preferred axis is, therefore, nonpolar and can
be reversed without changing the physical situa-
tion. This contrasts with ferromagnetics where
a reversal of the orientation changes the sign of
the polarization.

The orientation pattern of nematic liquid crys-
tals is in its state of lowest mechanical energy
when it is uniform. However, uniformity is not
usually observed. It is often prevented by an ir-
regular boundary alignment imposed, for instance,
by the container walls. In thick samples ()0.1-1
mm in P-azoxyanisole2) it seems to be destroyed
by convection due to minute temperature differ-
ences. ' A more or less uniform alignment can
usually be achieved by applying a magnetic field
of a several hundred oersteds or above. 4 The
anisotropy of the molecular diamagnetic suscep-
tibility of nematic materials is generally such
that the preferred axis tends to align parallel to
the field.

Let us consider a nematic substance in a homo-
geneous magnetic field. We assume that for some
reason the alignment is reversed by 180' in a
plane between two regions aligned parallel to the

field, the reversal taking place in a gradual fash-
ion in accordance with continuum theory. The
orientation pattern in the wall will be such that
the energy associated with the reversal assumes
a minimum. The energy is composed of a mag-
netic part due to the misalignment in the field
and of a mechanical part arising from the distor-
tion of the orientation pattern. Because of their
energy, alignment inversion walls will not in
general be stable structures. However, in cer-
tain cases they may not only form but be stable
or metastable, as is to be discussed below. The
orientation pattern of the wall may also be viewed
as a local equilibrium between field-induced and
distortional torques per unit volume. The mag-
netic and, therefore, the mechanical torques
must everywhere be perpendicular to the applied
field.

In order to develop a theory of alignment inver-
sion walls we first introduce a right-handed Car-
tesian coordinate system x, y, z with the z axis
parallel to the magnetic field. The local align-
ment may be described by the two angles p and

Sinosinp, siri6 cosp, and cos~ are the projec-
tions of the preferred axis, represented by a unit
vector, on the x, y, and z axes, respectively.
We use Frank' s' formula for the distortional
Gibbs free energy g per unit volume:

g = 2k||(s,+s,)'+ —,'k»(t, +t,)2+ 2k, (b,2+b,m)

—(k» + k,~) (s,s, + t,t, ) .

The splays (s), twists (t), and bends (b) denote
the distortions, while key ~22 ~33 and k,4 are the
elastic moduli. We substitute $, g, 0 for Frank' s
local right-handed coordinates x, y, z. The K di-
rection coincides with the preferred axis which
has an artificial polarity depending on the sign of
cos0. The $ and g axes are chosen normal and

parallel, respectively, to a plane containing the
z and K directions. Using p and 0 (so that Frank' s
BLz and 81& become sin08p and 80) one has

s = sin0(Bcp/8(), s = 80/Bg, t = —8 0/8$,

t =sin0(By/Bq), b =sin0(Bcp/Bg), b =d0/Bf
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Deriving the distortional torque per unit volume,
md, from (1) we note that md g must always van-
ish. The two other components are'

boundary conditions are

8(—~) = 0, 8(+~) =+w,

d 8(—~)/dx = d 8(+~)/dx = 0, (3)

d g 11 1 2 22 1 2

+k &b /&f
33 1

The last term in (1) is without effect. ~~' The
torque per unit volume due to the magneitc field
8 has only one component:

m =&y cos8sin8H',

where P is the field strength and &g (&0) the dif-
ference between the magnetic susceptibilities
parallel and perpendicular to the preferred axis.
(The secondary field due to the diamagnetic sus-
ceptibility can be neglected. )

The differential equations governing the spatial
dependence of p and ~ are

H)™d,) ' d, 71
(2)

Instead of dealing with the general case p(x, y, z),
8(x, y, z), let us consider plane walls parallel and
perpendicular to the magnetic field and guess the
solutions. In the first case we choose, without
loss of generality, the plane subtended by the y
and s axes. The orientation of the preferred axis
may then be expected to depend on x only. The

6I being a function of x. A simp1e solution is ob-
tained by setting p =0 so that t, is the only non-
vanishing distortion and (2) reduces to

hy cos8sinNP-k22(d28/dx~) = 0.

Double integration of this equation yields the fol-
lowing pair of solutions:

x = +(k22/b, pe) f d 8[1—sin (8+ 2m) j
+27T

-- +(k22/&yIP)"' ln tan28

if the boundary conditions (3) are taken into ac-
count. Rather than plot this function' we write
down the wall width which may be defined as the
half-value width I», over which ~ changes from
+45' to +135'. One finds

76 (k22/Q y )'

A schematic diagram of the orientation pattern is
shown in Fig. 1(a). The ferromagnetic analog is
the Bloch wall.

Another pair of solutions of (2) can be obtained
by setting p = 2r. This eliminates both twists,
one splay, and one bend and again ensures md &= 0. The balance of torques becomes

d d6
&y cos ~ sin&a' —k cos 0—cos L9-

dx dx

d d8
sino —sin6I —= 0.dx dx

The differential equation has the same simple

e
0

(a) (b) {c)

F&Q. 1. Schematic diagrams of some alignment inversion walls. (a) Twist wall subtended by y and s axes. Pro-
jection of preferred axis (or long molecular axis) on x,y plane is shown. (b) Splay-bend wall parallel to field, sub-
tended by y and z axes. Orientation lines (they are tangential to preferred axis) are shown. (c) Splay-bend wall
vertical to field. Orientation lines are shown.
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form as (4) if we assume k»=k»=h. Then the
half-value width is

i,q2
= 1.76(k/&y)' H

The orientation pattern is sketched in Fig. 1(b).
It is comparable to that of the Neel wall in ferro-
magnetic s.

The energy per cm' of the two alignment inver-
sion walls is

E = ,' f-k(d&/dx)mdx+ ,' f -H'ax sin'8dx,

k being either k» or k, respectively. The first
integral of (4),

(d 0/dx)' = (AXH'/k) s'n'8,

shows that the local distortional and magnetic
contributions are equal for the considered walls.
Accordingly, one has

E= f kl «/dxl «=2(»x)'"H
The only substance for which the three elastic

moduli k», k», and k» have been measured is P-
azoxyanisole (see below). As k» &k», k» one
would expect the Bloch-type wall to be more sta-
ble than the Neel-type structure. The following
calculation shows, moreover, that pure twist
walls parallel to the field represent the solutions
of lowest possible energy per cm', including
walls not parallel to the field. We use the rela-
tion , +, +t,t, = 0, valid if no surface torques are
in operation, ~' to eliminate t, . A few simple
transformations convert (2) into

g = 2k»(s, +l, +$2 )+—,'(k» —k»)(s, +s2)

+ —,k,2[s,m + (s,2s, '/t, 2) ]

+ 2(k 3
—k ~)b22+ 2k~/~2.

The first term may be given the form

2k22 —+ —+
~

= pk22 gradO

For any alignment inversion wall ~ has to change
by +2m as one goes from one side to the other.
For any path through the wall, as described by
the travelled length l', one has

g ~ 2k»(grad6) ~ 2k»(86/&l),

provided k» k11 k33 Because of this inequality
and since Eq. (5) is the solution of minimum en-
ergy for a function ~ of only one variable, it is
impossible to find a path on which the wall ener-
gy is less than 2(AXk»)'~ H. 2This result applies,
of course, to the general case where both p and
0 are functions of all three variables x, y, and

z, comprising structures that are not solutions
of (2).

An alignment inversion wall perpendicular to
the magnetic iield is sketched in Fig. 1(c). It is
characterized by the differential equation

d . do
~X sin(9 cos 6''-k sin 6)—sin ~—

dz dz

d dL9-k cos e—cos &—= 0. (7)dz dz

p can be chosen arbitrarily but must be constant.
A solution of (2) involving twist apparently does
not exist. This situation seems to be exceptional.
It is readily seen that for plane walls of all other
orientations there is just one pair of solutions
containing only splay and bend (with p = 2n').
There is at least one other pair involving twist
and, for walls not parallel to the field, the other
distortions. The splay-bend solutions are unsta-
ble if kP2 kll k33 as may be seen by varying p.

In P -azoxyanisole which is nematic between
118 and 135'C one has k» = 0.7 10 dyn, k»
= 0.43 ~ 10 6 dyn, k = 1.7 ~ 10 dyn, and &&

= 1.3
~10 ' cgs units, taking the values for 120'C. At
500 Oe the width of a twist wall, i.e., Bloch-type
wall, is

L „,= 0.64 ~ 10 ' cm.

The width of walls involving splay and bend but
no twist lies between the values for 5=k» and k
=k» [cf. Eqs. (6) and (7)]:

0.81X10 ' cm & I- I & 1.3~10 cm.

We may conclude that at 500 Qe all types of align-
ment inversion walls in p-azoxyanisole should be
about 1&& 10 cm thick.

In the experiments of Williams, ' 0.25- to 1.65-
mm thick layers of P-azoxyanisole were spread
on a glass substrate. The material was illumi-
nated from the bottom and viewed through a mi-
croscope from the top, the magnetic field being
parallel to the substrate. At 500 Oe and above
Williams observed sharp lines which he inter-
preted as a kind of grain boundaries. An expla-
nation in terms of alignment inversion walls ap-
pea, rs plausible for the following reasons. First,
Williams' pictures show that most of the walls,
if they were not simply lines, must have stood
upright on the substrate. Erectness may be ex-
pected because it minimized the area and thus
the energy of the wall. Second, the lines were
not wider than 1X 10 ' cm, the width calculated
for alignment inversion walls at 500 Oe. Third,

1520



VOLUME 21, NUMBER 22 PHYSICAL REVIEW LETTERS 25 NOVEMBER 1968

no well-defined boundaries were seen below 500
Qe. This seems to indicate that the effects of
convection currents prevailed over the aligning
force of weak fields. It appears reasonable that
the critical wall width is comparable with the
distance over which the orientation is usually
uniform if no field is applied (see Naggiar s re-
sult above).

An alignment inversion wall can be stable or
metastable if there are boundary restraints pre-
venting it from moving out of the sample or, if it
is cylinderlike, from contracting until it vanish-
es. A wall may also be stabilized if the sample
shape does not allow for a decrease in area by
migration. Mainly the first factor was presum-
ably responsible for Williams's results. It is in-
teresting to note that similar considerations are
used to explain the stability of disinclinations,
the frequently observed linear orientation irreg-
ularities characteristic of the nematic meso-
phase. The formation of alignment inversion
walls upon applying the magnetic field requires a
strongly nonuniform orientation pattern in the
fieldless state. The nonuniformity may be pro-
duced by the aforementioned convection currents
or by the effect of boundaries. Diffuse inver-
sions performed in this way would become sharp
walls when the field is applied.

We wish to point out that we do not attempt to
explain the optical activity observed by Williams. '
However, additional experiments' seem to lend
further support to our view that he saw alignment
inversion walls.

I wish to thank Professor J. L. Ericksen for
helpful criticis m.
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A model is presented which explains the observed dependence of the coupling between
the primary and secondary vortices on the driving current, or primary vortex velocity,
in the dc superconducting transformer. The basic idea is that viscous drag effects lead
to a slippage between the vortices in the primary film and those in the secondary film
for sufficiently large vortex velocities.

The existence of the dc superconducting trans-
former' 4 convincingly supports the idea of cur-
rent-induced vortex motion. In this experiment,
two superconducting films sandwich a very thin
dielectric layer. One of the metal films is char-
acteristically about twice as thick as the other.
The dielectric layer (SiO) electrically insulates
the two films. Passing a current through the
thicker film (called the primary) results in a

force being exerted upon the Abrikosov micro-
structure' established in the film by means of an
applied perpendicular magnetic field. As soon as
this force is large enough to depin the vortices,
they are said to move through the film and a volt-
age appears across the primary. Since the thin-
ner film (called the secondary) is positioned so
close to the primary, the motion of the primary
vortices exerts a drag upon the microstructure


