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kinetic energy, where the differential cross sec-
tion for inelastic scattering is markedly depen-
dent on the scattering angle. Also shown in Fig.
2 are ratios for the total cross section derived
from the work of Vainstein, Opykhtin, and Pres-
nyakov. ' These theoretical values have been used
for comparison with our differential cross-sec-
tion ratios since no closer theoretical data are
available. Although a comparison of total and
differential cross sections is not completely sat-
isfactory, we feel that it is justified for cross-
section ratios for dipole transitions.

As can be expected, the theoretical curves
agree well with our data at high incident-electron
energies. Furthermore, at high incident ener-
gies we can use the Born approximation to obtain
the differential cross section from the optical
line-strength ratio. The latter has been deter-
mined experimentally and found to be 2.1 + 0.2. '
From this value we derive a differential cross-
section ratio of 1.9+ 0.2, which is in good agree-
ment with our measurements at high energies.

At low incident-electron kinetic energies the
Born approximation cannot be expected to agree
with our differential cross-section ratios. How-

ever, calculations based on the Vainstein model
are also constant over the range of our measure-
ments. Only when the excess energy of the scat-

tered electrons is comparable with the difference
in energy of the thresholds of the two states do
the Born approximation and the Vainstein model
predict a decrease in the cross-section ratio. It
should be remembered that the lowest energy of
the electrons after scattering in our experiment
was l. 5 eV, and probably higher (see above for
correction), and that this is approximately 20
times the difference in threshold energy for the
6'P», and 6'P», states. It seems possible that
some improvement could be made in the theoreti-
cal calculations by the inclusion of spin-depen-
dent forces in the Schrodinger equation.
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It is shown that theoretical calculations which use the exponential model p =go(r/r)
&& exp( —r/p) for the variation of the dipole moment p with internuclear separation r can
be forced into agreement with experiment only if one uses dipole parameters po, p which
are in serious disagreement with values computed by the molecular Hartree-Fock ap-
proximation. On the basis of a Drude model calculation, it is concluded that the expo-
nential model is an inadequate representation of the true physical situation because of
its neglect of electron correlation effects.

The elegant experiment by Bosomworth and
Gush' has aroused considerable interest on the
part of theoreticians, and several papers have
appeared recently~ ' in which theoretical calcu-
lations of the spectral line shape for collision-
induced absorption in rare-gas mixtures or re-
lated systems have been made. In the first four
of these papers (Refs. 2-5) a heuristic model
was employed for the variation of the collision-

induced dipole moment of a heteropolar rare-gas
diatom with internuclear separation, which
yields good agreement with experiment when cer-
tain parameters are suitably adjusted. We shall
not discuss these calculations further here. In
the second four papers (Refs. 6-9), the dipole
moment was assumed to vary in what apparently
is a physically realistic way:

p = po(r/r) exp( rip)- (I)
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A similar form has been suggested in theoreti-
cal papers dealing with the integrated absorp-
tion. "'" A calculation of p. as a function of r
has been performed by Matcha and Nesbet, ' us-
ing the molecular Hartree-Fock approximation,
which at first sight tends to confirm (1). We
shall show, however, that the contrary is true,
and that a critical comparison of exponential-
model calculations with Ref. 12 shows that the
exponential model represents at best only a part
of the dipole moment, and that another part of
about equal importance must exist. This second
part is easily accounted for by appeal to a long-
range dispersion interaction, which the Hartree-
Fock calculation by its nature cannot obtain. '

Consider the moments of the absorption spec-
trum o.((u):

~y kT $'+(+-,'
p'm 5'+(+~2 ' (8)

where $ =r,/p F.or He-Ar mixtures at room
temperature and typical potentials, x, =2.7 A; in
addition, p =0.32 A is consistent with the expo-
nential model, so that $ =8.4. Then the bracket-
ed expression in (8) is =1.03, and varies only
very slowly with temperature because of the slow
variation of x,. A similar result applies for Ne-
Ar mixtures. Thus we can write

as a function of temperature by the condition

—,'m(v ') = ,'kT-=p(~ ),x 0'
where m is the reduced mass, and y(x) is the in-
teratomic potential. Substituting (1) and (8) into
(4) and (5), one finds

3@c
2n 4wn n

2n-1
(o n((u)

p = (k Ty, /my, )'j2,

xcoth dv, (2)

as defined by Sears, ' where ng, ng are the num-
ber densities of the two species in the gas mix-
ture, c is the speed of light, and the other sym-
bols have their usual meanings. It can be shown
that these moments also are given by'

=V(~d"p/dt"
~ ),

y, = I g(r) d
+2p' dr,

4nkT ~ dp 2

m 0 dJ (5)

where g(r) is the radial distribution function, and

p(r) is the scalar dependence of the collision-in-
duced dipole upon distance. It has been pointed
out by Futrelle" that the ratio ym/y, from (4) and
(5) is virtually independent of the interatomic po-
tential for the exponential model (1), and com-
parison of the theoretical ratio with the experi-
mental value, determined by (2) and (8), allows
one to determine unambiguously the value of the
range p. To illustrate the point, let us approxi-
mate g(r) by

g(r) =0, r &~,; g(x) =1, r~ r, ;

where the effective collision diameter ~, is given

where V is the sample volume, and the brackets
denote a canonical average. In the classical lim-
it, the canonical averaging gives in particular2

y, =4m f, r'g(r)[p(r)/dr, (4)

and"

which is independent of potential. To show this
more precisely, we have determined p for vari-
ous potentials by adjusting it so that the ratio of
(5) to (4) agrees with the experimental value.
The latter was obtained by analytically integrat-
ing the line-shape formula of Levine' for He-Ar
and by numerically integrating the empirical
line-shape formula of Bosomworth and Gush'. for
Ne-Ar. The numerical values are given in Ta-
ble I. It is to be stressed that the close agree-
ment of the former line-shape formula3 with the
experiment makes it a convenient empirical rep-
resentation of the experimental data, and it is
only in that sense that it has been used. Given
the value of p, we then obtain the value of p, by
adjusting it so that the experimental and theoreti-
cal values of y2 are in agreement. Using two dif-
ferent potentials' &" for He-Ar, we compare in
Fig. 1 the result of such a calculation with the
results in Ref. 12. The disagreement is greater
than can be attributed to the uncertainty in the
experimental values" of y, and y2, or to numeri-
cal errors in Ref. 12. A number of other poten-
tials'~~'~ ' lead to curves lying between the two
shown, and a similar plot holds for Ne-Ar. Ref-
erence 12 gives a dipole moment less than the ex-
perimental curves indicate, suggesting that an
additional contribution to the dipole moment must
exist. The difference is most easily accounted
for by the fact that Ref. 12, being a molecular
Hartree-Fock calculation, by its nature does not
include electron correlation effects, which be-
come dominant in the dispersive long-range lim-
it.
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Table I. The spectral moments 7p, 72.

Momenta Experiment

Theory, Eqs. (4), (5), (18), (19)
LJ (6-12) potential Exp-6 potential

b c d e f

He-Ne

He-Ar

Ne-Ar

7p
72
7p
72
7p

72

1.70
1.17
2.38
0.550

0.0331
0.0205
1.29
0.540

0.0335
0.0208
1.38
0.575
1.10
0.107

0.0391
0.0251
1.49
0.640
1.22
0.121

0.0371
0.0243
0.979
0.401
0.879
0.0838

0.0321
0.0203
1.35
0.580
l.30
0.132

0.0319
0.0201
1 37.

0.587
1.13
0.112

aUnits of 7p, 10 8 erg cm; of 72, 10 3 erg cm
sec

Ref. 17, p. 466.
Ref. 14, p. 1110 (viscosity potential), using empiri-

cal combining rules.

Ref. 14, p. 1110 (virial coefficient potential), using
empirical combining rules.

eRef. 15.
fRef. 18.
gRef. 19.

Insofar as the dipole moment of a rare-gas di-
atom is concerned, Buckingham2' has shown by
quantum-mechanical perturbation theory that at
large separations the variation of the dipole mo-
ment is of the form ILt,

-~ '. We can estimate the
magnitude of this dispersive term by a straight-
forward semiclassical calculation based upon the
Drude model. '4

Consider two coupled harmonic oscillators with

a Hamiltonian

& = —,'( ,m, 'rm+, r,'+kg, '+k, ~,')

2 1 1 1 1

n . = ea/m. (u .'.
2 2

(14)

I 0.0

5.0

polarity is 1+2 . The amplitude can be related
to the mean square extension by

6lA. ln=&r2)
28

and the product m~+~~ can be related to the po-
larizability e& by'~

2.0

where r„r,are the displacements of the oscilla-
tors from their equilibrium positions. In the
limit of large x we may expand the equations of
motion in powers of x '. This leads to a set of
coupled linear differential equations for r, and

r2, which can be solved successively. The dipole
moment of the interacting oscillators is then ob-
tained by averaging e(r, + r,-) over time and

phase. We find that

I.O

0.5

0.3
0.2

0. 1

.05

.02

.01

where in particular

.005
1.0

I

2.0
0

3.0

IA, l2 lA2 I"i

In (12), the A's a,re the amplitudes and the &u's

the frequencies of the unperturbed motion. The

FIG. 1. Dipole moment for He-Ar based upon assum-
ing the form of Eq. (1) and adjusting pp, p to match the
experimental values of 7p, 72 (solid curves). The upper
curve is based upon the potential of Ref. 15, and the
lower upon the potential given in Ref. 14, p. 1110, us-
ing second virial coefficient data and empirical com-
bining rules. The crosses are the results of the calcu-
lation of Ref. 12.
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lf we assume equal effective masses, the use of
(13) and (14) reduces (12) to

p, = loee, n, ((r,') (-r,')}
As a further approximation, we can use

(15)

a relation which can be tested on atomic hydro-
gen, ' where it is easily shown to be correct to
within 10%. Thus, we finally write

as an approximation for the dispersive part of
the dipole moment in terms of the atomic polar-
izabilities. Using the experimental polarizabili-
ties, we obtain

p, (He+Ne ) =0.17X10 "esu cm',

p7(He+Ar ) =2.43&&10 7S esu cm,

p, (Ne+Ar ) =3.07&10 "esu cm'. (18)

To assess the importance of these values, we
can compute the moments y„y,assuming the di-
pole moment to be of the form

with p, given by (18). Using (4) and (5), we ob-
tain the values listed in Table I. These values
represent a considerable fraction of the experi-
mental values for He-Ar and Ne-Ar. For HeNe,
Bosomworth and Gush' were unable to see any
spectrum experimentally and the small values
listed for this case are in keeping with their neg-
ative result.

Despite the crudity of our estimate of p,
„

the
above results suggest that a dispersive term of
the form (19) goes a long way toward explaining
the discrepancy indicated in Fig. 1. This means
that none of the calculations of Refs. 6-9 pro-
vides a definitive explanation of the experimental
results. Further theoretical work must be car-
ried out with consideration of the fact that the

simple exponential model (1) does not adequately
describe the dipole moment in mixed rare gases.
What is clearly called for is an empirical form
constructed by analogy with the well-known exp-6
potential, which assumes the form (1) for small
r and the form (19) for large r, and undergoes a
smooth transition between the two forms for in-
termediate distances.
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