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MEASUREMENTS OF THE POLARIZATION IN m+P ELASTIC SCATTERING AT 5.15 GeV/c*
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We report results obtained at the zero-gradient synchrotron for the polarization

in m.+p and n. P elastic scattering at 5.15 GeV/c, from -t = 0.2 to 2.0 (GeV/c)2. The

results may be qualitatively understood on the basis of a simple Hegge-pole model.

In addition to the flip amplitude due to p exchange, a significant I=O flip amplitude

is required.

%e have recently measured the polarization in
m+p elastic scattering at a laboratory momentum
of 5.15 GeV/c over the range of f=0.2 t-o 2.0
(GeV/c)'. Previous measurements at high ener-
gies have been restricted to t(0.8-(GeV/c)'. '
The extended range of -t is important for testing
Regge-pole models. In particular we can see
what happens beyond t = -0.6 (GeV/c)', where

ap(t) = 0.
The measurements were performed at the zero-

gradient synchrotron (ZGS) with the Argonne po-
larized-proton target. Some of the experimental
details have been briefly described before. ' A
seven-counter scintillation hodoscope in the in-
coming beam defined the pion momentum to
+0.5% within a total acceptance of a3.5%. How-

ever, we found no significant change in polariza-
tion within the +3.5% interval so the data present-
ed here are summed over the seven bins. Other
hodoscopes in the beam measured the incident
angle and position at which particles struck the
polarized target. The 8 and y angles and times
of flight of both final-state particles were mea-
sured by means of arrays of scintillation coun-
ters. Events from mp scattering off the free pro-
tons of the lanthanum magnesium nitrate (LMN)
target show up as peaks in the 8-angular correla-
tion of the two final-state particles. The back-
ground under the peaks was subtracted in two in-
dependent ways. One method was to use nonco-
planar events to establish the shape of the 8 cor-
relation for the background events. The second
method was simply to interpolate the background
under the peaks by fitting the events outside the
peaks with a simple function. Both methods gave
the same results well within errors. Incident
beam intensities were typically 10' particles per
pulse. The effective rate for the 7t+ measure-
ments was less, since the beam composition was

75% protons and 25% w+. Between 200 and 300
events per pulse were processed by an on-line
computer. The computer immediately rejected
those events with more than two final-state par-
ticles, made coplanarity and time-of-flight cuts,
and sorted and stored the events for on-line dis-
play of various distributions, including the 8-an-
gular correlations. During each run the individ-
ual events were also written on magnetic tape,
and at the end of each run the stored distribu-
tions were written on tape for subsequent analy-
sis. Several NMR measurements of the target
polarization were made during each run and pro-
cessed by the computer at the end of the run.
The value of -t and its resolution were deter-
mined for each counter which detected scattered
pions by means of a Monte Carlo program which
traced the incoming and scattered particles
through the field of the polarized-target magnet.

The results for the polarization are shown in
Fig. 1. The errors are statistical and include
the uncertainty in background subtraction. There
is an additional normalization error of +10% due
to uncertainty in the target polarization which av-
eraged about 0.55 over the duration of the experi-
ment. The results are consistent with the behav-
ior of the n+P polarizations, P~, which have been
measured' for -t 0.8 at momenta between 6 and
12 GeV/c; that is, P+ is positive while P is
negative, and both become small near -t =0.6.
An interesting feature is that the maximum value
of -P at small -t which is about 0.2 in Fig. 1
is essentially unchanged up to 12 GeV/c. On the
other hand, the maximum value of P+ appears to
decrease with increasing momentum. ' Our re-
sults confirm that P goes positive in the region
0.5~-t&0.8 as is suggested by the earlier re-
sults at 6 GeV/c. ' Note that P+ does not, in a
corresponding way, become negative in this in-
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FIG. 1. Polarization in w+p elastic scattering at
5.i5 ~Vg. .

where'

terval, but is closely equal to P . In our pre-
liminary data at lower momenta P+- P near -t
= 0.6 to a remarkable degree while the magnitude
of P~ is as large as 0.15 and clearly inconsistent
with zero. At larger values of -t, P+ and P di-
verge again, with P+ remaining positive and P
becoming again negative.

Polarizations and other experimental data at
high energies have been fitted by a series of Reg-
ge-pole models. ' ' In these models the I=0 ex-
change amplitude consists of the Pomeranchuk
(P) and the P' Regge poles. For the I= 1 ex-
change amplitude, the p Regge pole is used. In
these models the dominant polarization term at
small -t comes from the real part of the flip am-
plitude of the p trajectory interfering with the
imaginary part of the nonf1. ip amplitude of the P
and P'. Because the I=1 p trajectory contributes
with opposite sign to the w+P and m P amplitudes
and the I= 0 trajectories contribute with the same
sign, we have6

sin8 Im[A '(t)B *(t)]
p (t)=*I fear Ks (do/dt)~

sin8 ImA '(t)ReB (t)
p

16m/s (do'/dt)+

beyond -t =0.6, and only one of them has at-
tempted to fit data beyond t=-1.0 (GeV/c)'. ' Our
data show that P (t) = P+(t) at large -t as well,
indicating that the p still dominates the polariza-
tion at values of -t well beyond 0.6. Note that
when o.&(t) passes through zero, both factors in
the numerator of Eg. (2) change sign. Thus, P+
stays positive and P negative, provided ImA, '(t)
does not also change sign.

Within the framework of the three-pole model,
ImA0'(t) = ImAP'(t) at small t -Ho. wever, at the
larger values of -t [say between 1 and 2 (GeV/
c)'], the elastic cross sections decrease rapidly
with increasing energy. This indicates that
ImA0'(t) =ImApi'(t). ~ For Eqs. (1) and (2) to work
we need to ensure that Im[AP'(t)+Api'(t)) re-
mains positive beyond -t =0.6. Since, very like-
ly, o.p (t) passes through zero somewhere near
-t = 0.6,' it may be important to consider what

happens to ImAp, '(t) at upi(t) = 0. In most of the

Regge fits a factor of apr is used to eliminate
the pole in ReApi'(t) and this makes ImApi'(t)
change sign. '~' The no-compensation mechanism
(factor of api' ), on the other hand, maintains the
same sign. ' Although other explanations are no
doubt possible, these simple considerations tend
to favor no sign change in ImAPI'(t). "

To the extent that P (t) w P+(t), one-must in-
troduce terms of the type A, 'B,~ which appear
symmetrically in P+ and P . This may also al-
low P+ to decrease with increasing momentum
while holding P approximately constant. The
above-mentioned models have not been particu-
larly successful in duplicating this aspect of the

The relative roles of the terms which are sym-
metric and antisymmetric with respect to m P
and m p are illustrated in Fig. 2. There we have
plotted the combinations

sine dh + dt

1
[im(A, B,*)+1m(A, B,*)], (2)

and

~ P— + P—

ReB (t) ~a (t) tan[~a (t)]/I'(n (t)+1).
p p p p

(2)
1

[Im(Ac'Bc*) + Im(A~'B~~)].

Thus to first order, P (t) = -P+(t) and both van-
ish at a&(t) =0 which occurs at -t=0.6.' The
models differ considerably in their predictions

The second term on the right-hand side of Eq.
(4) is equal to (Pdg/dt)0/sin8, the polarized
charge-exchange cross section divided by sin6).
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Table I. Results of fitting [(Pdo/dt)+d:(Pdo/dt) ]/
sing with Aeb~.
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Fig. 2. Plots of (sin()) 'I(Pd(tldt)+ + (Pdb/stt) -]«
rived from the data of Fig. 1. Also shown is (sing)
x (Pdb/&) t)

calculated from the charge exchange cross
section and the assumption that Pp =+0.1.

In the simple three-pole model this is identically
zero. However, experimentally P,= 0.1 for -t
& 0.4.'» Even so, Im(A, 'B,*) is negligible com-
pared with Im(Ad'Bd*) for -t ~ 0.4 where mea-
surements of P, have been made. Possibly P, is
even larger at larger values of -t, but only for

t~ 0.8-could Im(A, 'B,s') become comparable with

Im(A, 'Bd*). For completeness we have also plot-
ted (Pdc/dt)d/sine in Fig. 2 assuming Pc=+0.1 at
all t.

The dramatic behavior of the antisymmetric
combination [E(l. (3)] shown in Fig. 2 is consis-
tent with the vanishing of Bp(t) at a&(t) =0. Also
Im[A, 'Bd*] appears to be negligible at least at -t
= 0.6. On the other hand, the symmetric combi-
nation [E(l. (4)] appears to fall off smoothly with
increasing -t.

Since both sets of points in Fig. 2 appear to ex-
hibit exponential behavior at small -t, we have
fitted them with the function Ae&t which is often
used to fit differential cross sections. The re-
sults are shown in Table I. The slopes are
steeper than the value 8 (GeV/c) ' obtained for
(do/dt)~ at momenta near 5 GeV/c. "

In the three-pole model the symmetric combi-
nation in Fig. 2 is due to interference between the
P and P' trajectories. We have seen previously
that the no-compensation mechanism for the P'
provided an attractive explanation for the sign of
the antisymmetric combination at large -t. How-

Antisymmetric
lEq. (3)1

Symmetric
lEq. (4)l

Symmetric
I. Eq. (4)l

-t ~0.6

-t «0.8

-t ~1.8

282 +61

29 +10

28 +10

14.4 +0.8

9.25+1.0

9.1 ~1.0

ever, this mechanism makes both Api' and Bpt
vanish at +pi =0. Then, except for the small
contribution of Im(A, 'B,s'), the symmetric com-
bination vanishes at epi = 0. This does not ap-
pear to be supported by the data. Although other
explanations within the framework of the three-
pole model may be possible, the nonzero charge-
exchange polarization data'~ point out obvious
limitations of the simple model.
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The reaction E e Ax n for c.m. energies from 1600 to 1740 MeV is found to pro-
ceed entirely through the two-body Y&*(1385)m state. A partial-wave analysis of the
Y&*(1385)n state implies s-channel production of Y&*(1660), Y&*(1765), and a Y&*(1700)
with the subsequent decay of each into Y&*(1385)~. A determination of the mass, width,
elasticity parameter, spin, and parity of each of these s-channel resonant states has
been made.

The analysis discussed in this Letter consid-
ers, in a formation experiment, the pure I= 1
~ra final state and the sequential decay Y*
—Z(1385)w-Amv. This assumed sequential de-
cay offers certain advantages for analysis since
if a resonant state decays through the Z(1385)
which has spin ~, and a r which has spin 0, then
the production angular distribution of the Z(1385)
will be free of the Minami ambiguity and will,
in principle, uniquely ditermine the spin and
parity &+ of the parent resonant state. ' How-
ever, in this energy region, interference ef-
fects and overlapping Z(1385) bands sre expect-
ed to distort this and other distributions' as
either pion may form a Z(13&5) with the lambda
and Bose statistics are required for the final-
state pions. Since direct s-channel production
is believed to dominate the Z(1385)e state at

this energy, ' a partial-wave analysis is feasible
provided the distorting effects mentioned above
are taken into account. The isobar-model for-
mulation of Deler and Valladas, ' hereinafter re-
ferred to as DV, accounts for these effects and
is used in the following partial-wave analysis.

The experimental data for this analysis were
obtained from an exposure of the Brookhaven
National Laboratory 30-in. deuterium-filled bub-
ble chamber to K beams of momenta 670, 720,
770, 810, 850, and 910 MeV/c. The reaction
analyzed was K n(P)-Av (Pv), where (P) indi-
cates the spectator proton. Fits were accepted
only for those events having a measurable spec-
tator proton, and a y' probability ~5/p. Events
accepted in this analysis also were required to
have a spectator momentum less than 280 MeV/
c. The spectator -momentum distribution of

1413


