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The new statistical model due to Griffin has been extended to include charged-particle
emission by evaluation of the transition matrix in terms of a relative velocity and scat-
tering cross section. Additionally a quite different formulation is derived for the equi-
librium emission probability, whereas the precompound emission probability is similar
to Griffin's result.

A new statistical model for medium-energy re-
actions has recently been proposed' in which a
precompound decay probability may be computed
at each stage of the approach of the initial system
to the long-lived equilibrium state, in addition to
the decay probability of the equilibrium state.
The new model differs further from the earlier
statistical model in that all transitions are as-
sumed to proceed via weak two-body interactions
in a single-particle-model nucleus; the details
of the two-body interaction are suppressed with-
in an average and constant transition matrix ele-
ment

~
M~ for transitions in which the particle-

plus-hole number remains constant or changes
by +2 units, while it is assumed that

~
M~ =0 for

all other transitions.
In this note, an extension of the new statistical

model is presented in which
~

M~ is evaluated in
terms of a relative velocity between particles v
and a scattering cross section o(v) for the pro-
cess. This results in a formulation in which both
compound and precompound probabilities have a
different velocity dependence than in the earlier
formulations, and introduces an inverse cross
section permitting application to reactions in-
volving charged-particle emission. The deriva-
tions are based on and follow Griffin's work

p (E) =g(gE) /n!(n-1)!.
n

The total density of states at excitation E is

p(E)= Z p (E),
n~3

(2)

where n is taken at 2-unit intervals correspond-
ing to the selection rule imposed by the assumed
two-body interaction. The emitting-nucleus exci-
tation will be represented by E, the residual-nu-

closely; the precompound result differs mainly
in the velocity dependence of the outgoing parti-
cle, whereas the compound emission probability
yields basic disagreement with the earlier formu-
lation.

Derivations are presented first for the precom-
pound emission probability, then for the com-
pound emission probability, following which a
short discussion of the application of the model
to the interpretation of experimental results is
presented. Following Griffin, ' particles and
holes are not differentiated in the model, but are
referrred to simply as excitons, represented by
exciton number n. %ith an average single-parti-
cle-level density g, the density of n-exciton
states at excitation E is
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~Mp=fva(v)/12rp (E)n.
n

(4)

cleus excitation by U, particle-channel energy by

~, and momentum by P.
Assume a nucleus excited initially into a 3-par-

ticle and -hole (or 3-exciton) state, progressing
via successive two-body collisions to an equilib-
rium distribution centered about a most probable
exciton number n. Assume that each n-exciton
state along the way has a small probability for
decay into the continuum with respect to the prob-
ability of scattering into an (n+ 2)-exciton state,
which in turn is large with respect to the proba-
bility of scattering into an n- or (n-2)-exciton
state so long as n &n.

The decay probabil. ity per unit time in going to
an n-exciton state may be calculated from pertur-
bation theory:

~ =I/~ =(2v/@)~MPp (E),
n n n

where 7„ is the lifetime,
~ M~ is the square of

the transition matrix element, and p„(E) is the
density of n-exciton states. For a collision be-
tween two particles of relative velocity v, in the
volume 0, &u =vo(v)/0 where a(v) is the cross
section for the interaction, appropriately aver-
aged over all angles. ~ Solving (3) for ~MP with
this assumption yields

The density of states (in energy units) for an
exciton state with the restriction that one exciton
is in the continuum with channel energy between
e and e+de may be written as

4''0 dp
P (U)(2 ~)~ d

—de. (5)

If (5) is substituted into Eq. (3) in place of the
total n-exciton density of states p„(E), the decay
probability to the restricted set of n-exciton
states represented in (5) may be calculated. If

in addition the value for
~

M~~ calculated in Eq. (4)
is substituted into the new equation, the precom-
pound decay probability per unit time for emis-
sion of an exciton with channel energy between E

and ~+d~ may be written

1 mrna(v) p (U)
(8 (E)df:'= p@ ( )

d's ~

n n
(6)

The total precompound emission probability for
an exciton of channel energy r to &+de may then
be obtained by summing Eq. (6) from the initial
exciton number to the most probable equilibrium
value, n = (gE)'i~, each n differing by two units.
Inclusion of the statistical degeneracy of the
emitted particle, 2s+1, and substitution of Eq.
(1) for p„ 1(U) and p„(E) yields the total precom-
pound emission rate,

(2s+1)mrna(v)E U
(7)

The compound emission probability is computed in the same manner as Eqs. (6) and (7), except that
the decay probability of an n-exciton state is multiplied by the fraction of all states which may decay
to an n-exciton state (those of n or n+ 2 excitons) and the sum is extended over all exciton numbers
(even or odd), giving the compound emission probability

(d (f)dE =
C

(2s+1)mrna(v) p 1(U) P (E)+P ( E) +p (E)

m 8' ~
p (E) p(E)

d E'. (6)

Substitution of Eq. (1) followed by evaluation of the resulting power series yields the result

(2s+1)mrna(v)p(U) U ' E '
c zap(E) E U

where

(9)

p(E) o-E 'exp[2(gE)'"].

Equation (9) differs from the Weisskopf formulation~ solely in the quantity in the square brackets. If
E»U, Eq. (9) may be simplified further,

(d (E')dE = (2s+ 1)mrna(v)U ' exp[2(gU)' ]
gsE-' exp[2( gE) '"]
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Equations (7) and (9) are then assumed to sum in-
coherently to give the total emission probability
for channel energy &,

(o(e) =o.(u (e)+(1—a)(u (~),
p C

where the fraction of precompound decays o. is
assumed to be small.

The scattering cross section o(v) may probably
be approximated by optical-model nonelastic
cross sections, with precisely the same uncer-
tainty as arises from use of ground-state rather
than excited-state cross sections in the statisti-
cal model of Weisskopf. This follows since the
process of a projectile entering a nucleus and be-
ing absorbed following a two-body collision
should be the inverse of the scattering process
within the nucleus for the time-reversed process.
Further discussion of this point may be found in
the work of Lane and Wandel, 4 who calculate the
imaginary part of the optical potential from aver-

210—

ages over nucleon-nucleon scattering cross sec-
tions.

Some of the implications of Griffin's model are
illustrated in Figs. 1 and 2. Figure 1 illustrates
the relative contributions to precompound emis-
sion as a function of exciton number and U/E. It
may be seen that for low values of U/E, precom-
pound emission must take place after very few
scattering events, or not at all, whereas for
higher U/E (corresponding to emission of the
first particle from a compound system at quite
high excitation) the maximum in the distribution
does not occur until after several scattering
events with an extremely slow decrease with in-
creasing exciton number following the maximum.
The relative neutron energy spectra for emission
from states of several different exciton numbers
are shown in Fig. 2, where the curves shown rep-
resent the product of e and the appropriate terms
of the sum in Eq. (7). The spectra were calculat-
ed for a nucleus initially excited to 20 MeV, with
5-MeV neutron binding energy. These results
are independent of mass number and average lev-
el spacing of the emitting nucleus. The following
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FIG. 1. Relative contribution to precompound emis-
sion as a function of exciton number, n, and excitation
ratio, U/E. For the solid curves the ordinate repre-
sents relative values of the terms of Eq. (7) for the ex-
citon numbers given by the abscissa; the numbers
above the curves are the ratios of excitation of product
nucleus to emitting nucleus. The dashed curves have
the same significance except that the abscissa repre-
sents the difference between the exciton number of the
emitting nucleus and the average equilibrium exciton
number, n. These curves would be relevant to situa-
tions in which the initial exciton number exceeded the
average equilibrium exciton number, and were comput-
ed for a nucleus of g=10 MeV, E = 50 MeV.
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FIG. 2. Relative spectral distributions for neutrons
for emission to states of various exciton number. The
ordinate represents the emission probabilities calcu-
lated with Eq. (7) as a function of neutron kinetic ener-
gy. The numbers above the solid curves represent the
exciton numbers of the final states involved. The
dashed curve with the n denotation was calculated with
Eq. (11)for an equilibrium distribution. The emitting
nucleus parameters are described in the text. The
dashed curve has an arbitrary normalization factor.
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observations may be made from Figs. 1 and 2:
Emission from low exciton number gives spectra
with quite high kinetic energies, consistent quali-
tatively with the high-energy tails observed in
neutron spectra and in excitation functions for re-
actions induced by medium-energy proj ectiles.
The spectra approach the equilibrium distribution
as n -n. The example of an equilibrium spectrum
shown in Fig. 2 was calculated with Eq. (9) for
the system described above, with g = 10 MeV
(for which F7 =12).

The spectral distribution is shown in Fig. 2 for
n =21, a distribution which gives very much low-
er kinetic energies than the equilibrium values.
Such a situation could arise in heavy-ion reac-
tions, i.e. , a situation where the initial exciton
number is far in excess of the equilibrium value.
For example, in forming A =160 nuclei at 50-
MeV excitation via a Ne '-induced reaction with

g =10 MeV l, n =22. If the interaction of the
projectile with the nucleus is strictly as in a sin-
gle-particle model, the initial exciton number
could be as high as 60, far in excess of the equi-
librium value. The dashed curves of Fig. 1 rep-
resent the relative emission probabilities ap-
proaching n from above [e.g. , Eq. (9) evaluated

from n = 60 to n = 22], showing a possibility of
significant precompound emission. In this case,
the precompound spectra may show a considerab-
ly lower kinetic energy than the equilibrium val-
ue, which is the same qualitative result obtained
from the old statistical theory when angular mo-
mentum effects are considered to lead to rota-
tional cooling. Thus, this model suggests an al-
ternative explanation for such an effect, render-
ing certain types of heavy-ion experiments am-
biguous in interpretation.

The author very much appreciates long and
fruitful discussions with Professor J. J. Griffin,
as well as with Professor J. B. French, Profes-
sor J. R. Huizenga, Professor D. Koltun, and
Professor D. Sperber.
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We present results of detailed spin- and isospin-dependent analyses of pd and p- He
elastic-scattering intensities, polarizations, and total cross sections. The basic nucle-
on-nucleon scattering amplitudes used yield nucleon-nucleon observables in excellent
agreement with measurements, including those of the elastic-scattering intensity, po-
larization, and spin correlation. Contributions of multiple scatterings, including multi-
ple charge-exchange collisions, produce considerable structure in the predicted polari-
zations.

There has been much theoretical and experi-
mental interest lately in scattering of medium-
and high-energy particles by few-nucleon sys-
tems. ' " Extensive measurements were recent-
ly made at the Brookhaven Cosmotron where 1-
GeV protons collided with a number of different
target nuclei. ' Intensities for elastic scattering
by deuterium and 4He were among the observ-
ables measured. The most striking and surpris-
ing property of these intensities was the virtual
absence of a minimum in the pd angular distribu-
tion for four-momentum transfers t) -1.4 (GeV/
c)' contrasted to the appearance of a rather deep

and sharp minimum in the p- He angular distri-
bution near t ~ -0.24 (GeV/c)'. There has been
no satisfactory explanation of this phenomenon.
However, it has been conjectured' that the spin
dependence of the basic nucleon-nucleon (NN)
scattering amplitudes might perhaps help solve
this puzzling feature. We wish to present calcu-
lations which illustrate the influence of that spin
dependence upon pd and P-4He intensities, polar-
izations, and total cross sections.

Most of the recent analyses' ' of collisions be-
tween particles with kinetic energies «1 GeV and
light nuclei have been made by means of the
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