VOLUME 21, NUMBER 18

edge the experimental assistance of R. Nielsen for the heat treatment experiments.

*Research sponsored by the Defense Atomic Support Agency, Washington, D. C., under Contract No. DASA 01-68-C-0064, and RCA Laboratories, Princeton, N. J. ¹See, for example, the two review articles by F. Seitz,

Rev. Mod. Phys. <u>26</u>, 7 (1954), and <u>18</u>, 384 (1946).

²G. P. Smith, IEEE Spectrum <u>3</u>, 39 (1966).

³W. A. Weyl and T. Forland, Ind. Eng. Chem. <u>42</u>, 257 (1950); F. K. McTaggart and Joy Bear, J. Appl. Chem. (London) <u>5</u>, 643 (1955); Joy Bear and F. K. McTaggart, J. Appl. Chem. (London) <u>8</u>, 72 (1958); William M. Mac-

verin and P. R. Ogle, J. Am. Chem. Soc. <u>76</u>, 3846 (1954).

⁴See, for example, R. S. Title, Phys. Rev. Letters <u>4</u>, 502 (1960); Kazov Morigahi and Teruhiko Hoshina, J. Phys. Soc. Japan 21, 842 (1966).

⁵D. L. Carter and A. Okaya, Phys. Rev. <u>118</u>, 1485 (1960).

⁶K. A. Muller, Helv. Phys. Acta <u>31</u>, 173 (1958).

⁷E. S. Kirkpatrick, K. A. Muller, and R. S. Rubins, Phys. Rev. <u>135</u>, A86 (1964).

⁸Ru-Tao Kyi, Phys. Rev. <u>128</u>, 151 (1962); Te-Tse Chang, Phys. Rev. <u>136</u>, A1413 (1964).

⁹H. W. Gandy, Phys. Rev. 113, 795 (1959).

¹⁰W. S. Baer, Phys. Rev. <u>144</u>, 734 (1966).

EUROPIUM-TERMINATED CHROMIUM FLUORESCENCE IN EuAlO₃:Cr³⁺

J. P. van der Ziel and L. G. Van Uitert Bell Telephone Laboratories, Murray Hill, New Jersey (Received 27 September 1968)

An optical emission process is observed in which a Cr^{3+} ion, initially in the ${}^{2}E_{g}$ excited state, simultaneously emits a photon and excites a neighboring Eu^{3+} ion to an excited ${}^{7}F_{J}$ level. Transitions terminating on J=1 through 5 have been found.

In the optical-emission spectrum of Cr^{3+} doped EuAlO₃ we observe, in addition to the two transitions from the crystal-field-split ${}^{2}E_{\sigma}$ levels to ${}^{4}A_{2g}$ levels, a number of strong lines at longer wavelengths. The additional lines are not associated with the emission of single Cr^{3+} , Eu^{3^+} , or other impurity ions, but consist of a compound process in which a Cr³⁺ ion makes a transition from the ${}^{2}E_{
m g}$ to ${}^{4}\!A_{
m 2g}$ levels while a neighboring Eu^{s+} ion simultaneously goes to an excited state, and the energy difference is emitted as a photon. The effect is closely related to, but distinct from, the excitation of ion pairs observed by Varsanyi and Dieke.¹ It is guite different from the satellite lines observed in the spectrum of dark ruby, as there the level structure is determined not by single-ion levels, but by chromium-pair levels.²

The crystal has the orthorhombic crystal structure, D_{2h}^{16} -Pbnm, with four molecules in the unit cell.³ There are two magnetically inequivalent rare-earth ion sites having C_{1h} (mirror plane) symmetry, and four inequivalent aluminum sites with C_i (inversion) symmetry. The Cr^{3+} substitutes for Al^{3+} , and the presence of a center of symmetry requires the transitions to be magnetic dipole.

Figure 1(a) shows the emission spectrum at 77°K in the immediate vicinity of the chromium R lines. Compare this with the emission from

the isomorphic crystal $YAlO_3:Cr^{3+}$, Fig. 1(b), which shows the expected emission of two *R* lines and a very weak vibronic spectrum. The latter, when examined under higher gain, has a complex structure and shows no simple relation to Fig. 1(a). Thus the lines in Fig. 1(a) are not vibronics.

Paramagnetic-resonance measurements further indicate that Cr³⁺ is found only on the four inequivalent sites.⁴

FIG. 1. (a) Emission spectrum of $EuAlO_3$: Cr^{3+} at 77°K. The temperature dependence of several of the satellite lines relative to the R_1 and R_2 lines is denoted by the bracketed 1 and 2, respectively. (b) *R*-line emission from YAlO₃: Cr^{3+} at 77°K.

The energy of the europium ${}^{7}F_{1}$ levels, which are split by the crystal field into three singly degenerate levels, was found by measuring the room-temperature absorption to the ${}^{5}D_{0}$ level in nominally pure EuAlO₃. The results are shown on the first line of Table I and essentially repeat the measurements made by Holmes <u>et al</u>. which are shown on the second line.⁵

Fluorescence measurements made at 4.2° K using EuAlO_s gave the typical europium ${}^{5}D_{0}$ to ${}^{7}F_{J}$ emission⁶ and confirmed the level assignments. A very weak spectrum identical to Fig. 1(a) indicated the presence of a minute amount of Cr³⁺ impurity. Measurements were made on crystals containing from 0.03 to 0.1% chromium. The intensity of the lines at 13546 and 13675 cm⁻¹ did not vary linearly with the chromium concentration, while the remaining structure scales linearly with both the *R* line intensity and the doping level. Thus we attribute the former emission lines to either chromium pairs or rare-earth impurities, while the latter cannot have this origin.

Because of thermal depopulation of the upper ${}^{3}E_{g}$ level, the R_{2} line is not seen at 4.2°K. In addition, only half of the lower-energy lines remain, allowing us to make the identification shown in the lower two rows of Table I. Three resolved lines are observed for the lowest energy ${}^{7}F_{1}$ level, and two for the middle level. The width of the 13 233-cm⁻¹ line is comparable with the total width of the other lines and may contain a number of unresolved components. These may result from $Cr^{3+}-Eu^{3+}$ pair interactions for which the levels of the inequivalent Eu^{3+} ions are displaced unequally by the introduction of the Cr^{3+} ion in the Al³⁺ site. Although the splitting of the ${}^{7}F_{1}$ levels is sensitive to low-symmetry

Table I. Energies (in cm⁻¹) of the ${}^{7}F_{1}$ Eu³⁺ levels as determined from the pure EuAlO₃ absorption and the Eu³⁺-assisted Cr³⁺ fluorescence. In the site coordinate frame, the ${}^{7}F_{1}$ wave functions transform as x, y, and z, and the energies are labeled by this convention.

		Ey	Ez	Ex
EuAlO ₃ a		280	358	471
EuAlO ₃ ^D		281	359	479
EuAlO3:Cr3+	R_1	278.2	358.5	473.5
EuAlO ₃ :Cr ³⁺	R2	286.1	358.8	472.8

^aPresent measurement.

^bResults of Holmes, Sherwood, Van Uitert, and Hufner (Ref. 5). distortions of the cubic field,⁵ the line shift from multipole and exchange interactions between the ions may be appreciable.⁷ For the particular lines chosen, the agreement with the ${}^{7}F_{1}$ levels is excellent, an indication that the sites responsible for these lines are well removed from the $Cr^{3^{+}}$ sites. At the larger separation, the weaker coupling is partially compensated for by the increase in the number of Eu³⁺ sites.

Transitions terminating on the ${}^{7}F_{2}$ level are shown in Fig. 2. The crystal field splits the ${}^{7}F_{2}$ into five components, and the energy of these levels in EuAlO₃ is shown in the top of Fig. 2. The 1064.4-cm⁻¹ europium line is apparently spurious; it was not observed by Holmes <u>et al.</u>⁵ The agreement with remaining lines is excellent; note, in particular, the shoulder on the line at 12700 cm⁻¹ corresponding to the 1001.6-cm⁻¹ line.

At 4.2°K, seven lines are observed between 8400 and 8600 Å, and these are identified as the emission terminating on the ${}^{7}F_{3}$ level. Transitions terminating on the ${}^{7}F_{4}$ level are found between 9100 and 9500 Å. Above 10 100 Å a number of lines are observed which are attributed to transitions terminating on the ${}^{7}F_{5}$ level. Taking the maximum intensity of the ${}^{7}F_{1}$ terminated line as unity, the peak intensities of ${}^{7}F_{J}$ for J=2, 3, 4, and 5 are, respectively, 0.04, 0.28, 0.15, and 0.09. The values have been corrected for changes in the spectral response of the S-1 photomultiplier tube.

Fluorescent-lifetime measurements were made using a short-duration flash ($\sim 3 \times 10^{-6}$ -sec) and monitoring the fluorescence decay on an oscilloscope. To within the experimental accuracy, the lifetimes of the Cr³⁺-doped crystals were unchanged on decreasing the temperature from 77 to 4.2°K. For $YAlO_3$: Cr³⁺ we find $\tau = (53 \pm 1)$ $\times 10^{-3}$ sec which is slightly longer than $\tau \approx 10^{-2}$ sec obtained by Imbusch for the magnetic dipole lines in MgO: Cr^{3+} .⁸ At 77°K the sum of the *R*line intensities is 20% of the total intensity. The *R*-line lifetime thus is 0.26 sec. Using $f\tau = 1.6$ $\times 10^{-9}$ sec with the calculated value of the magnetic-dipole *R*-line oscillator strength of f = 5.5 $\times 10^{-9}$, we find $\tau = 0.35$ sec. This indicates the R lines are magnetic dipole with a quantum efficiency of 72%

The 4.2°K emission of EuAlO₃ initially decayed with $\tau \approx 2.5 \times 10^{-5}$ sec. This was followed by a decay having a time constant of 10^{-3} sec.

In $EuAlO_3$: Cr^{3+} the emission from the R lines and the satellites decayed exponentially with

FIG. 2. Chromium emission terminating on the ${}^{7}F_{2}$ europium levels at 4.2°K. The separation from R_{1} is given above each line. Shown on top is the ${}^{7}F_{2}$ - ${}^{7}F_{0}$ level separation obtained from pure EuAlO₃ fluorescence.

 $\tau = 10^{-5}$ sec. This is two orders of magnitude shorter than the 4×10^{-3} -sec lifetime in ruby, where, because of a lack of inversion symmetry, the lines have electric-dipole polarization.⁹ At 4.2° K it is estimated that less than 2% of the total emission is in the R_1 line. Measurements made using doped YAlO₃ and EuAlO₃ crystals under identical experimental conditions indicate the total radiative efficiencies are equal to within a factor ± 2 . The main uncertainty results from unknown variations of the chromium doping levels and the possibility of energy transfer between the Eu^{3+} and Cr^{3+} ions. This rules out the possibility that the short lifetime results from a rapid nonradiative decay. Well over 70% of the total emission terminates on the ${}^{7}F_{1}$ level. The weak intensity of the remaining lines results from admixing of the J levels by the crystal field; in particular, the rhombic field accounts for the large ${}^{7}F_{3}$ intensity.

Using the measured value of the lifetime, we compute the total oscillator strength to be 1.6 $\times 10^{-4}$. The strong line at 13 440 cm⁻¹ contains about 8% of the total emission, and we assume this line to result from interactions with eight nearest-neighbor europium ions. Then $f=1.6 \times 10^{-6}$ for a single Cr³⁺-Eu³⁺ pair. The oscillator strength may be estimated from

 $f = f_0 (|\mathcal{K}| / \Delta E)^2,$

where \mathcal{H} is the perturbation coupling the ions via

the higher energy excited states, f_0 is the oscillator strength to these levels, and ΔE is their energy separation. Using reasonable values for the energy shift $\delta E \approx |\mathcal{K}|^2 / \Delta E$ of about 1 cm⁻¹ per pair, $f_0 \approx 10^{-1}$, and $\Delta E \sim 10^5$ cm⁻¹ yields $f \approx 10^{-6}$ in good agreement with the previous calculation. A more complete description of the experimental results and an explanation of the Cr³⁺-Eu³⁺ coupling via exchange will be reserved for a future publication.

One of us (J. P.v.d. Z.) is indebted to M. D. Sturge for a helpful discussion and to L. M. Holmes for a preprint of his paper. The technical assistance of F. L. Clark is appreciated.

⁵L. Holmes, R. Sherwood, L. G. Van Uitert, and S. Hufner, Phys. Rev. (to be published).

⁶See, for example, L. G. DeShazer and G. H. Dieke, J. Chem. Phys. <u>38</u>, 2190 (1963).

⁷D. L. Dexter, Phys. Rev. 126, 1962 (1962).

- ⁸G. F. Imbusch, thesis, Stanford University, 1964 (unpublished).
- ⁹D. F. Nelson and M. D. Sturge, Phys. Rev. <u>137</u>, A1117 (1965).

¹F. Varsanyi and G. H. Dieke, Phys. Rev. Letters <u>7</u>, 442 (1961).

²A. L. Schawlow, D. L. Wood, and A. M. Clogston, Phys. Rev. Letters <u>3</u>, 502 (1959).

³S. Geller and V. B. Bala, Acta Cryst. <u>9</u>, 8 (1956). ⁴J. P. van der Ziel, F. R. Merritt, and L. G. Van Uitert (unpublished work).

¹⁰J. P. van der Ziel, to be published.