edge the experimental assistance of R. Nielsen for the heat treatment experiments.

*Research sponsored by the Defense Atomic Support Agency, Washington, D. C., under Contract No. DASA 01-68-C-0064, and RCA Laboratories, Princeton, N. J. ¹See, for example, the two review articles by F. Seitz,

Rev. Mod. Phys. 26, 7 (1954), and 18, 384 (1946).

 ${}^{2}G.$ P. Smith, IEEE Spectrum 3, 39 (1966).

 $3W$. A. Weyl and T. Forland, Ind. Eng. Chem. 42 , 257 (1950); F. K. McTaggart and Joy Bear, J.Appl. Chem. (London) $\overline{5}$, 643 (1955); Joy Bear and F. K. McTaggart, J. Appl. Chem. (London) 8, ⁷² (1958); William M. Macverin and P. R. Qgle, J. Am. Chem. Soc. 76, 3846 (1954).

 4 See, for example, R. S. Title, Phys. Rev. Letters $\underline{4}$, ⁵⁰² (1960); Kazov Morigahi and Teruhiko Hoshina, J. Phys. Soc. Japan 21, 842 (1966).

5D. L. Carter and A. Qkaya, Phys. Rev. 118, 1485 (1960).

 $6K.$ A. Muller, Helv. Phys. Acta 31, 173 (1958).

 ${}^{7}E.$ S. Kirkpatrick, K. A. Muller, and R. S. Rubins, Phys. Rev. 135, A86 (1964).

 8 Ru-Tao Kyi, Phys. Rev. 128, 151 (1962); Te-Tse Chang, Phys. Rev. 136, A1413 (1964).

⁹H. W. Gandy, Phys. Rev. 113, 795 (1959).

 10 W. S. Baer, Phys. Rev. 144 , 734 (1966).

EUROPIUM-TERMINATED CHROMIUM FLUORESCENCE IN EuAlO₃:Cr³⁺

J. P. van der Ziel and L. G. Van Uitert Bell Telephone Laboratories, Murray Hill, New Jersey (Received 27 September 1968)

An optical emission process is observed in which a $\mathrm{Cr^{3+}}$ ion, initially in the $^2E_\mathrm{g}$ excited state, simultaneously emits a photon and excites a neighboring Eu^{3+} ion to an excited ^{7}F level. Transitions terminating on $J=1$ through 5 have been found.

In the optical-emission spectrum of Cr^{3+} doped EuAlO₃ we observe, in addition to the two transitions from the crystal-field-split ${}^{2}E_{g}$ levels to $^{4}A_{2g}$ levels, a number of strong lines at longer wavelengths. The additional lines are not associated with the emission of single Cr^{3+} , $Eu³⁺$, or other impurity ions, but consist of a compound process in which a Cr^{3+} ion makes a transition from the ${}^{2}E_{g}$ to ${}^{4}A_{2g}$ levels while a neighboring Eu^{3+} ion simultaneously goes to an excited state, and the energy difference is emitted as a photon. The effect is closely related to, but distinct from, the excitation of ion pairs observed by Varsanyi and Dieke.¹ It is quite different from the satellite lines observed in the spectrum of dark ruby, as there the level structure is determined not by single-ion levels, but by chromium-pair levels.²

The crystal has the orthorhombic crystal structure, D_{2h}^{16} -Pbnm, with four molecules in
the unit cell.³ There are two magnetically inequivalent rare-earth ion sites having C_{1h} (mirror plane) symmetry, and four inequivalent aluminum sites with C_i (inversion) symmetry. The Cr^{3+} substitutes for Al³⁺, and the presence of a center of symmetry requires the transitions to be magnetic dipole.

Figure 1(a) shows the emission spectrum at 77° K in the immediate vicinity of the chromium R lines. Compare this with the emission from

the isomorphic crystal $YAlO₃:Cr³⁺, Fig. 1(b),$ which shows the expected emission of two R lines and a very weak vibronic spectrum. The latter, when examined under higher gain, has a complex structure and shows no simple relation to Fig. 1(a). Thus the lines in Fig. 1(a) are not vibron-1cs.

Paramagnetic-resonance measurements further indicate that Cr^{3+} is found only on the four inequivalent sites.

FIG. 1. (a) Emission spectrum of $EuAlO₃: Cr³⁺$ at 77'K. The temperature dependence of several of the satellite lines relative to the R_1 and R_2 lines is denoted by the bracketed 1 and 2, respectively. (b) R -line emission from $YAlO₃: Cr³⁺$ at 77°K.

The energy of the europium ${}^{7}F_1$ levels, which are split by the crystal field into three singly degenerate levels, was found by measuring the room-temperature absorption to the 5D_0 level in nominally pure EuA1O₃. The results are shown on the first line of Table I and essentially repeat the measurements made by Holmes et al. which are shown on the second line.⁵

Fluorescence measurements made at 4.2'K using EuAlO₃ gave the typical europium 5D_0 to 7F_J emission⁶ and confirmed the level assignments. A very weak spectrum identical to Fig. 1(a) indicated the presence of a minute amount of Cr^{3+} impurity. Measurements were made on crystals containing from 0.03 to 0.1% chromium. The intensity of the lines at $13\,546$ and $13\,675$ cm⁻¹ did not vary linearly with the chromium concentration, while the remaining structure scales linearly with both the R line intensity and the doping level. Thus we attribute the former emission lines to either chromium pairs or rare-earth impurities, while the latter cannot have this origin.

Because of thermal depopulation of the upper 2E_g level, the R_2 line is not seen at 4.2°K. In addition, only half of the lower-energy lines remain, allowing us to make the identification shown in the lower two rows of Table I. Three resolved lines are observed for the lowest energy ${}^{7}F_1$ level, and two for the middle level. The width of the $13\,233\,\text{cm}^{-1}$ line is comparable with the total width of the other lines and may contain a number of unresolved components. These may result from Cr^{3+} -Eu³⁺ pair interactions for which the levels of the inequivalent $Eu³⁺$ ions are displaced unequally by the introduction of the Cr^{3+} ion in the Al³⁺ site. Although the splitting of the ${}^{7}F_1$ levels is sensitive to low-symmetry

Table I. Energies (in cm⁻¹) of the ${}^{7}F_1$ Eu³⁺ levels as determined from the pure $EuAlO₃$ absorption and the Eu^{3+} -assisted Cr^{3+} fluorescence. In the site coordinat frame, the ${}^{7\!}F_1$ wave functions transform as $x,~y,~$ and z, and the energies are labeled by this convention.

		$E_{\, \nu}$	E_z	E_{Υ}
$EuAlO3a$ EuAl $O3$ ^b		280	358	471
		281	359	479
EuAlO ₃ : Cr^{3+} EuAlO ₃ : Cr^{3+}	R1	278.2	358.5	473.5
	R2	286.1	358.8	472.8

Present measurement.

^bResults of Holmes, Sherwood, Van Uitert, and Hufner (Ref. 5).

distortions of the cubic field, $^{\rm 5}$ the line shift from multipole and exchange interactions between the ions may be appreciable.⁷ For the particular lines chosen, the agreement with the ${}^{7}F_1$ levels is excellent, an indication that the sites responsible for these lines are well removed from the Cr^{3+} sites. At the larger separation, the weaker coupling is partially compensated for by the increase in the number of $Eu³⁺$ sites.

Transitions terminating on the ${}^{7}F_{2}$ level are shown in Fig. 2. The crystal field splits the ${}^{7}F_{2}$ into five components, and the energy of these levels in EuAlO₃ is shown in the top of Fig. 2. The $1064.4-\text{cm}^{-1}$ europium line is apparent. spurious; it was not observed by Holmes et al.⁵ The agreement with remaining lines is excellent; note, in particular, the shoulder on the line at 12700 cm^{-1} corresponding to the 1001.6-cm line.

At 4.2'K, seven lines are observed between 8400 and 8600 A, and these are identified as the emission terminating on the ${}^{7}F_{3}$ level. Transitions terminating on the ${}^{7}F_{4}$ level are found between 9100 and 9500 Å. Above 10 100 Å a number of lines are observed which are attributed to transitions terminating on the ${}^{7}F_{5}$ level. Taking the maximum intensity of the ${}^{7}F_1$ terminated line as unity, the peak intensities of ${}^{7}F_J$ for $J=2, 3,$ 4, and ⁵ are, respectively, 0.04, 0.28, 0.15, and 0.09. The values have been corrected for changes in the spectral response of the S-1 photomultiplier tube.

Fluorescent-lifetime measurements were made using a short-duration flash $(\sim 3 \times 10^{-6} - \text{sec})$ and monitoring the fluorescence decay on an oscilloscope. To within the experimental accuracy, the lifetimes of the Cr^{3+} -doped crystals were unchanged on decreasing the temperature from 77 to 4.2°K. For YAlO₃:Cr³⁺ we find τ =(53 ± 1) $\times10^{-3}$ sec which is slightly longer than $\tau \approx 10$ sec obtained by Imbusch for the magnetic dipole lines in MgO: $Cr^{3+}.^8$ At 77°K the sum of the Rline intensities is 20% of the total intensity. The R-line lifetime thus is 0.26 sec. Using $f\tau = 1.6$ $\times10^{-9}$ sec with the calculated value of the magnetic-dipole R -line oscillator strength of $f = 5.5$ \times 10⁻⁹, we find τ =0.35 sec. This indicates the R lines are magnetic dipole with a quantum efficiency of 72%

The $4.2^{\circ}K$ emission of EuAlO₃ initially decayed with $\tau \approx 2.5 \times 10^{-5}$ sec. This was followed by a decay having a time constant of 10^{-3} sec.

In EuAlO₃: Cr^{3+} the emission from the R lines and the satellites decayed exponentially with

FIG. 2. Chromium emission terminating on the ${}^{7}F_2$ europium levels at 4.2°K. The separation from R_1 is given above each line. Shown on top is the ${}^{7}F_{2}$ - ${}^{7}F_{0}$ level separation obtained from pure EuAlO₃ fluorescence.

 τ =10⁻⁵ sec. This is two orders of magnitud shorter than the 4×10^{-3} -sec lifetime in ruby, where, because of a lack of inversion symmetry, the lines have electric-dipole polarization. 9 At 4.2'K it is estimated that less than 2% of the total emission is in the R_1 line. Measurements made using doped $YAlO₃$ and $EuAlO₃$ crystals under identical experimental conditions indicate the total radiative efficiencies are equal to within a factor ± 2 . The main uncertainty results from unknown variations of the chromium doping levels and the possibility of energy transfer between the Eu^{3+} and Cr^{3+} ions. This rules out the possibility that the short lifetime results from a rapid nonradiative decay. Well over 70% of the total emission terminates on the ${}^{7}F_1$ level. The weak intensity of the remaining lines results from admixing of the J levels by the crystal field; in particular, the rhombic field accounts for the large ${}^{7}F_{3}$ intensity.

Using the measured value of the lifetime, we compute the total oscillator strength to be 1.6 \times 10⁻⁴. The strong line at 13 440 cm⁻¹ contain about 8% of the total emission, and we assume this line to result from interactions with eight nearest-neighbor europium ions. Then $f = 1.6$ $\times10^{-6}$ for a single Cr³⁺-Eu³⁺ pair. The oscillator strength may be estimated from

 $f = f_0(|\mathcal{K}|/\Delta E)^2$,

where $\mathcal K$ is the perturbation coupling the ions via

the higher energy excited states, f_0 is the oscillator strength to these levels, and ΔE is their energy separation. Using reasonable values for the energy shift $\delta E \approx |\mathcal{X}|^2 / \Delta E$ of about 1 cm⁻¹ per pair, $f_0 \approx 10^{-1}$, and $\Delta E \sim 10^5$ cm⁻¹ yields $f \approx 10^{-6}$ in good agreement with the previous calculation. A more complete description of the experimental results and an explanation of the Cr^{3+} -Eu³⁺ coupling via exchange will be reserved for a future publication.

One of us $(J.P.v.d.Z.)$ is indebted to M. D. Sturge for a helpful discussion and to L. M. Holmes for a preprint of his paper. The technical assistance of F. L. Clark is appreciated.

5L. Holmes, R. Sherwood, L. G. Van Uitert, and S. Hufner, Phys. Rev. (to be published).

 6 See, for example, L. G. DeShazer and G. H. Dieke, J. Chem. Phys. 38, 2190 (1963).

 7 D. L. Dexter, Phys. Rev. 126, 1962 (1962).

 ${}^{8}G.$ F. Imbusch, thesis, Stanford University, 1964 (unpublished).

 $^{9}D.$ F. Nelson and M. D. Sturge, Phys. Rev. 137, A1117 (1965).

 10 J. P. van der Ziel, to be published.

 1 F. Varsanyi and G. H. Dieke, Phys. Rev. Letters 7 , 442 (1961}.

 2 A. L. Schawlow, D. L. Wood, and A. M. Clogston, Phys. Rev. Letters 3, 502 (1959).

 $3S.$ Geller and V. B. Bala, Acta Cryst. 9, 8 (1956). ⁴J. P. van der Ziel, F. R. Merritt, and L. G. Van Uitert (unpublished work).