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CRITICAL-REGION SECOND-SOUND VELOCITY IN HE II
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We present data for the velocity and dispersion of second sound in the critical region
of He II. To good accuracy, the critical-region expressions relating u&, pz, and Cp are
shown to be self-consistent. The anomalous dispersion is consistent with recent esti-
mates of the coherence length.

During the past two years we have been inves-
tigating the velocity, dispersion, and attenuation
of second sound in the range 10 ' to 10 ' K be-
low T&.' We present here measurements of vel-
ocity and dispersion near Tp. Classical super-
fluid hydrodynamics (which relates the velocity
um to the superfluid density ps and the specific
heat Cp) is found to be self-consistent in the crit-
ical region.

We have also found asymptotic expressions in-
volving u2 which are completely consistent with
those for other quantities in the critical region;
and we therefore avoid the difficulties with re-
gard to asymptotic forms encountered by Pearce,
Lipa, and Buckingham' (PLB). Velocity-disper-
sion measurements near T~ yield information
regarding the coherence length E.

We first report data for the second-sound vel-
ocity very near Tp, which bears on the question
of the self-consistency of classical superfluid
hydrodynamics in the critical region near T&.
The interest in second sound near T& extends
beyond classical theory. The well-documented3~4
critical power-law dependence of other parame-
ters (p~, Cp) for the superfluid on the tempera-
ture difference T~-T has led to speculation'~'
that this singular thermodynamic behavior is due
to a singularity at T& in the order-parameter
fluctuation spectrum at low k —a pole in the tem-
perature-dependent coherence length at T&. If
this is the case, then the critical mode for this
system is second sound. As the temperature of
the superfluid is raised into the critical region
(T& T&60 mK), -the growing coherence length
$(T) becomes macroscopic, giving rise to macro-
scopic critical fluctuations in the local superfluid
velocity, inducing anomalous dispersion and at-
tenuation of the critical mode. (Second-sound
critical-attenuation measurements will be re-
ported elsewhere. )

The apparatus' consists of several resonant
cavities formed by flat lavite surfaces (5 cm')
spaced with quartz spacers (0.2-1 cm). The
cavity surfaces are coated with thin films of car-

bon and silver, and the cw resonance in each
cavity is generated and detected using a phase-
lock dual-quadrature system which is reported
elsewhere'~'. One channel of this dual-quadra-
ture detector is used to regulate the temperature
of the liquid-He II bath to an rms accuracy of
better than 10 K The experimental bath is
contained within another isothermal bath. ' The
second-sound velocity um(T) data were obtained
by measuring the mode spectrum of these cavi-
ties as a function of temperature. As the tem-
perature was changed, each resonance was fol-
lowed to its new frequency, keeping the wave-
length constant. If was found that for "normal"
power levels, u2 was power dependent very near
T& (T& T& 10 ' K-). Thus, if the experiment was
performed at constant power, an anomalous neg-
ative curvature would be introduced in u, (T).
The criterion which we used for an acceptable
upper power level was the presence of a clean
second-sound signal at Tp-T =10 ' K, which
amounted to a power input density less than 10~
W/cm2; all measurements are zero-power ex-
trapolations. For these u, (T) data, the temper-
ature was measured using very low-power car-
bon-resistance thermometry, and the tempera-
ture differences were formed from continuous
measurements of the resistance at the & point. '

We present here measurements of second-
sound velocity u, (T), and a test of the self-con-
sistency of the hydrodynamically related param-
eters Cp, p&, u2 in the low-k critical region. We
may ask if the usual classical relations' for the
superfluid remain valid in the critical region.
For this purpose, the critical region [$» $(0)]
may be divided into the high-k microscopic re-
gion (k $» 1), and the low-k macroscopic region
(k$ «1). We would expect different functional
forms for u, (T) in the two regions. These data
cover the low-k macroscopic critical region be-
tween 50 mK and 50 p. K below T~, wave number
3 ( k &470 cm ', and the frequency region 2.5
~10 (w & 1.3 x10'. Table I shows the second-
sound velocity data obtained by averaging many

1308



VOLUME 21, NUMBER 18 PHYSICAL REVIEW LETTERS 28 OCTOBER 1968
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observations at various harmonics, for several
temperatures within the critical region. Except
where noted, errors in velocity are less than 1

part in 104. Errors in T~-T are less than 3 p. K
These velocity data join accurately onto all ex-
isting data for T&-T&100 mK The thermometry
is identical to that used in our ps(T) experiment, '~'

and these data are of comparable accuracy. This
allows us to test the self-consistency of the clas-
sical' relation

u '=p TS/p C
2 S Pl P'

in the critical region. Using our data for um(T)

together with our data'~s for ps/p„(T), we calcu-
late Cp(T) using Eq. (1) with S=S(Cp). This is
done on a computer, since a nonlinear integral
equation relates Cp(T) to u~(T). These calculated
data for Cp(T) are compared with the measured4
data [Buckingham, Fairbank, and Kellers (BFK))
in Fig. 1. Comparing these data at large 1-T/
Ty, where the scatter is small, we find thermo-
dynamic self -consistency to within 2%. Self-
consistency of the quantities in Eq. (1) were also
obtained by PLB. However, they arbitrarily ad-
justed the right-hand side of the equation by 14%.
Very near T~, the specific heats agree within the
combined error. Equation (1) seems to be obeyed
over all of the presently accessible critical re-
gion. The implication is that classical super-
fluid hydrodynamics is obeyed well into the mac-
roscopic (low-k) critical region near Tp. How-

ever, we should expect large deviations from
hydrodynamics at large k in the microscopic
critical region, where the critical mode (second
sound) ceases to propagate (diffusion regime).

In the absence of a complete microscopic theo-
ry, there is no single function describing the
observables in both the low-k and high-k limits.
However, within the low-k regime we may ex-
pect to find asymptotic expressions for the vari-
ous experimental quantities which may then be

T),
- T K

FIG. 1. Specific-heat values calculated from the
second-sound velocity and superfluid density data by

classical superfluid hydrodynamics, compared with

measured specific-heat values.

p A
[(1 T/T ) -1]+8-,

2
(2)

we obtain asymptotically n'=0. 04+0.05, where
A and B are constants. The nearly equivalent

compared. Although the scaling-law description
of critical behavior explicitly assumes power-
law functions, we examine other functions as
well. The self-consistency of the relations for

ps, u2, and C~ is first checked using power
laws. In the region 10 4 to 10 ' K below T we
assume that all quantities, including the specif-
ic heat, may be fitted by a power law. The re-
sult for the second-sound velocity is u2'- (Tp
-T)'"", which yields the same exponent obtained
by PLB. Fitting the BFK data by a power law

yields C - (T -T) ", and taking our previous
P

result ps - (Tp-T)'66' we see that the exponents
on each side of Eq. (1) are equal. We note that
the specific heat, which is supposed to diverge
logarithmically, does not have zero exponent.
This is due to the fact' that, functionally, lnt is
never equivalent to t' except at t =0; over any
finite range of t, the exponent will be nonzero.
This is in part the origin of the discrepancies
envisioned by Pearce, Lipa, and Buckingham. '
Fisher' has shown that the function (1/o.')(t ~-1)
resolves this problem.

Since we have previously measured ps to an
accuracy equal to the present u2 data and with the
same thermometry, the experimental quantity

p /pu ' would be expected to be free from sys-
S 2

tematic error in temperature. Least-squares
fitting our data. for p~/pu22 with the function
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function ~'

p /pu =A(1-T/T ) ln(1-T/T )+8 (3)
2

results asymptotically in e' = 0.03 + 0.03. If Eq.
(1) is correct, a purely logarithmic Cp should
yield n'=0 for these functions. The small posi-
tive value of o. ' in Eqs. (2) and (3) is due in part
to a slight temperature dependence of the param-
eters A and B. Equation (1) suggests a better
function: Replace p~/pu2' in Eqs. (2) and (3) by

p TS2/p„u&'. The resulting fit is better, and we
obtain e ' = 0.016 + 0.016. Thus, the asymptotic
form of ps/pu2 is shown to be consistent with
the asymptotic form for C~.

The second-sound data can also be combined
with the specific-heat data to show asymptotical-
ly a characteristic power-law behavior

j. l

u C '=u (1 T/T )'-
2P 20

(4)

By using a least-squares fit, we find asymptoti-
cally that P'=0.666+0.004, u2, =3.37 &&10, using

Cp =3.54-1.3 1n(1-T/T&) from the specific-heat
data; and we see that the asymptotic form of
u2Cp'" is consistent with the asymptotic form
for p~. Thus, the questions raised by Pearce,
Lipa, and Buckinghamm in the analysis of their
recent second-sound data in regard to consisten-
cy of asymptotic forms appear to be resolved.

Second-sound velocity dispersion in the macro-
scopic critical region has been measured by ex-
citing the cavities at two harmonics ~, and w„
simultaneously. The phase difference between
the two oscillations is measured'~' continuously
as a function of 1-T/T~. The anomalous dis-
persion (tu„-n&ul)/v„ is measured to a short-
term accuracy of 10 ppm very near T~. For a
wave number k = 470 cm ' and at 7'~ -7'=0.15,
0.45 mK we obtain (&u»-30~, )/~» =(1.2 + 1.2)
x10 ~, (1.8+1.6) x10 '. Fitting with the disper-
sion relation'~~ &u =u,&[1+AEk+ .j, an'd using
the relation'~'~" g = 80(1-T/T ) '~', and assum-
ing & =1, we obtain (, =2+3 A. This value for
$, is consistent with recent calculations"~" giv-

0
ing 5, =1.2 A. We have also examined the possi-
bility of a term linear in the product Ek in the
above dispersion relation; if such a term is pres-
ent, its coefficient must be less than 2 x 10 '.
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