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We introduce a simple model Hamiltonian for the study of phase transitions in perov-
skite compounds ABO3 involving rotations of BO6 octahedra. Depending on the relative
magnitude of the anharmonic coefficients, we find a transition to the tetragonal or to the
trigonal phase. We obtain the temperature dependence of the rotation angle below the
transition temperature Tg, and of the soft-mode frequencies associated with the transi-
tion both above and below 1'z. The coupling to an elastic deformation field is briefly dis-
cussed.

Recently, considerable experimental progress
has been made towards the understanding of
purely structural second-order phase transitions
occurring in crystals of the perovskite family
~O, . This concerns structural analysis using
EPR methods, ' Raman scattering, ' and neutron
diffraction. ' The EPR results demonstrated the
essential static characteristic of the transition,
which is peculiar to the perovskite structure:
The &0, octahedra rotate about a tetragonal axis
in SrTiO~ and about a trigonal axis in LaA10~,
and it was found that the normalized rotation an-
gles vary quantitatively in the same way as a
function of reduced temperature below the transi-
tion. ' It was concluded that the rotation angle is
the order parameter for this type of transition.
Associated with the transition, one expects the
occurrence of soft modes4~': The frequencies of
those normal modes, which transform like the
order parameter, should become zero at the
transition temperature T~. For the case consid-
ered, this is the triply degenerate mode at the
R corner of the Brillouin zone transforming like
the axial vector representation I »' if the origin
is chosen at the B atom. This choice of origin is
more appropriate to the present case than that
used by Cowley, 4ye for which the representation
is I». Such a soft mode has recently been ob-
served in neutron diffraction by Shirane' in the
high-symmetry phase of SrTiO, . Due to the sym-
metry breaking at the phase transition, the mode
is split below T~ into two branches situated at
the zone center and transforming like I,. Both
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branches are then Raman active and have been
seen by Fleury, Scott, and Worlock. '

In this note, we study in a simple model the na-
ture of the transition, the behavior of the order
parameter, and the dynamics of the soft modes
above and below T~. We consider only the triply
degenerate I'„R-corner mode, and neglect the
motion of all other degrees of freedom. This
mode can be built up from localized displace-
ment fields R(l) associated with each cell (cell
index l), in much the same way as the electron
wave functions of a given band can be built up
from localized Wannier functions. The experi-
mental results suggest that these R(&) are essen-
tially rotations of &0 octahedra about the cell
center, with smaller displacements of more dis-
tant oxygen atoms (Fig. 1). The three indepen-
dent rotations about the cube axes permit the

FIG. 1. Displacement field of the Wannier-type func-
tion R(l).
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construction of three branches as required.
We assume a strong interaction between different R(l) favoring alternating rotations in adjacent

cells, which is suggested by the fact that adjacent octahedra share an oxygen atom. The resulting ro-
tation will be counterbalanced by anharmonic terms which we describe by a crystal-field-type poten-

tial for the R(l). We thus have the following Hamiltonian:

X=X . +X +X
kin pot int'

We assume the R(l) to be normalized, so that the kinetic energy takes the form

X„. =-.'Q,R*(i}. (2)

In the potential energy, we include anharmonic terms of fourth order:

X =Q(—,'&e IR(l)+4ff[R 4(l)+R ~(l)+R 4(l)]+2C[R 2(l)R ~(l)+R '(l)R 2(l)+R '(l)R '(l)p.
pot l 0 x y z x y y z z x

For the interaction, we assume the form'

X. = 2 Q',v(l, l ')R(l) R(l '),
int

where the Fourier transform of v(l, l'} takes on its minimum value vR at the R corner of the zone,

(4)

v =Q v(l-l') exp[iq (x -x ')]; qR l R l l ' R a'a'a
The model will show a phase transition only if the energy gain due to this interaction is larger than

the harmonic part of the potential energy:

) (d
R 0' (6)

In order to study the nature of the transition, we obtain the internal energy for given average values
(R(l)) of the form

(R(l)) =4 exp(iq x ) = (-I) ' ' '4.
R

Up to fourth order in 4, we find

8= (I/N)(3C) =8 (T)+ —,a(T)(4 '+4 '+4 ~)+ ,'b(T)(4 4+4 —4+4 4)
0 x y z x y z

+ ,c(T)(4 '4 '+-4 '4 '+4 '4 ')
x y y t z x (8)

with temperature-dependent coefficients to be de-
termined from the correlation functions. The
coefficient a(T) in particular consists of the neg-
ative part &0'+ vR, and a positive contribution
coming from the fluctuation of the R(l) in the an-
harmonic terms of ~t which will increase with
temperature. The transition temperature is de-
fined by a(Ta) = 0, and for temperatures close to
7'a, we can assume that

a(T) = n(T T), u & 0, -

and neglect the temperature dependence of b and
c. Here, we shall not attempt to calculate the
correlation functions, but rather consider e, b,
c, and &a as model parameters to be determined

4 =4 (T) -=
a (T) 1/2 (y 1/2

b b a(T -T)—
4 =@ =0,

y z

and five other points related by symmetry, of
depth -a'/4b. This corresponds to a rotation of
the 806 octahedra about a tetragonal axis.

from a comparison with experiment. Disregard-
ing the difference between adiabatic and isother-
mal changes, we obtain the equilibrium value of
4 by minimizing the energy. ~ Above &a, we have
4=0. Below Ta, we find two cases, depending
on the relative values of b and c (Fig. 2).'

1. 0 & b & c.—The energy has a minimum at

125'7
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singlet (A)

FIG. 3. Temperature dependence of the soft modes
above and below T (schematic).

FIG. 2. Ranges of the anharmonic coefficients g and
c leading to a transition into the tetragonal and the tri-
gonal states, respectively.

2. b ) c and b & -2c.—The energy has a mini-
mum at

The linear response to f is obtained by setting

4=4 +y, (15)

and linearizing with respect to p. One finds
~0

p= —D 'p+f,
where

4 =4 =4 =3 4 (T),
X P z D . = (amg/a4 a4 )lj i j eq' (16)

where

and seven other points related by symmetry, of
depth -3c'/4(b+ 2c). This corresponds to a rota-
tion of the &O~ octahedra about a trigonal axis.

Outside the region b & 0 and b + 2c & 0, there
exists no minimum of the energy.

Depending on the relative magnitudes of b and
c, we thus obtain a phase transition either into
a tetragonal or into a trigonal phase. The first
case is realized in SrTiOI, and the second one in
LaA10s.

The frequencies of the normal modes are most
conveniently obtained as the poles of the response
to an external field f(l, t) = f(l) exp(i&et) coupling to
the R(l). The equations of motion are

R(t) = — (X +X. )+f(l, t).
(I) pot int

(12)

We restrict the discussion to the motion of the R-
corner mode itself and set

The squares of the normal-mode frequencies are
thus the eigenvalues of the Hessian matrix of the
energy:

dec[(a28/a4 ac.) ~ '6. .]=0.
i j eq & ij (17)

Below the phase transition, it splits in' a dou-
blet and a singlet (Fig. 3): For the tetragonal
case,

j, 1

&o =(c-b) 4 (T), ru =(2b) 4 (T);

for the trigonal case,

= [j(b -2c)]'4 (»,

We find above the phase transition the triply de-
generate mode

(18)

f(t) = (-1) '

aS/a4+ f. (14)

(13)

The average of R(l) will then be of the form (7)
with a time-dependent 4. If we neglect the dif-
ference between the static and the dynamic aver-
ages of 3cpot+Xint, we find for 4 the equation of
motion

In both cases, there exists a relation

&u (T -&)/(u (T +6)=v2
A a T a (20)

between the singlet mode below Ta and the triplet
mode above Ta.

We have thus obtained a I T-Ta I" temperature
dependence in the critical region for the order
parameter below Ta, and for the normal-mode

1258



VOLUME 21, NUMBER 17 PHYSICAL REVIEW LETTERS 21 OGTQBER 1968

frequencies both above and below Ta. A more
refined statistical mechanical treatment may,
however, lead to a power different from 2. The
temperature dependence of the order parameter
is in qualitative agreement with the EPR results'
on SrTiO, and LaA10„no quantitative power law

(Tn-T) was derived from the measured values
because we find that a change of 1 in Ta=103'
results in a variation of n of over 30%. For the
soft modes determined by Raman scattering, a
value of n = 0.3 has been mentioned using Ta
=110 K However, due to the uncertainty in 7'a,

not too much weight should be attached to this
value of n.

It is well known that phases of slightly distort-
ed ~0, compounds, different from the tetrago-
nal 14/mcm and the trigonal R3c ones, exist, for
instance in GdA10, "at 300'K, and in the mineral
perovskite CaTiO, ." Consequently, in these
compounds other modes at the corner, faces, or
edges of the large zone must become soft be-
cause the unit cell is at least doubled. However,
investigations of the phase transitions of mixed
crystals like (Sr, Ca)TiO, have shown" that on
reducing the temperature, the phase associated

with the R-corner mode appears first. Also, the
highest noncubic phase of PrA10, or NdA103 is
probably isomorphic to that of LaA10, . '4 This
view is further supported by the recent structure
study in SrZr03, "which is orthorhombic at room
temperature, but the phase below the first transi-
tion at T = 1170'C is very probably the same asa
occurring in SrTi03. In pure CaTi03, in addition
to the Ti06 rotational mode, others may collapse
at the same or nearly the same temperature, ' ~'

probably due to the small size of the Ca ion.
We should like to emphasize that, in contrast

to the structural phase transitions discussed in

the present note, displacive ferroelectric phase
transitions occur in other structures as well
(e.g. , PbTe) and are not typical of the perovskite
structure.

So far, we have neglected all other degrees of
freedom of the crystal. We expect important ef-
fects from the coupling of the coordinates R(l)
with the long-wavelength acoustic phonons, and

in particular with a static elastic deformation of
the crystal. Symmetry considerations show that
such a coupling can be described in lowest order
by an interaction energy of the form

g —
y[(@ 2 —@2)p +(@ 2 3@2)e +(@ 2 ~s)e ]+/(4 4 E +@ @ e +4 4 e )

int x xx y yy z zz x y xy y z yz z x zx ' (21)

where the &g, are the components of the strain
tensor. By minimizing the total energy consist-
ing of Eqs. (8) and (21), and the elastic energy of
the crystal, we find below the phase transition a
spontaneous strain of tetragonal or trigonal sym-
metry, respectively, which varies as Ta-T in

the critical region, and a small change in the or-
der parameter @. Below Ta, the interaction
term (21) gives rise to a resonance interaction
between the soft rotational mode and transverse
acoustic phonons, and the normal modes of the
system consist of a coupled motion of the R(l)
and the elastic displacement field.
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discussions.
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