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Second-sound attenuation very near Tp, is found to be proportional to the square of the

frequency, and the damping diverges as (T~-T), 0 =0.34+0.06, in agreement with dy-
namic scaling. The coefficient of the damping is consistent with recent estimates of the
coherence length.

Recently Ferrell et al. ' and others2~ have pre-
dicted an asymptotic power-law divergence of
the second-sound damping coefficient Dm

- (T&
-T) "' in the critical region of He II on the ba-
sis of "dynamic scaling. " Extending the static
scaling ideas4 involving a single coherence
length $(T) -(Tp-T) ~'~, they describe the dy-
namics near Tp in terms of a single character-
istic frequency &P =u~$ ', where u~(T) is the
second-sound velocity. For frequencies ~ such
that co &re* and kg &1, and for temperatures
within the critical region, the above asymptotic
form for the second-sound damping D~(T) re-
sults. In order to test the dynamic scaling hy-
pothesis, we have measured the damping of sec-
ond sound in the macroscopic critical region
kg«l between I x10 ' and 3x10 ~ deg below Tp
and for ~ &co~. In addition, we report measure-
ments of the frequency dependence of the corre-
sponding anomalous attenuation very near Tp.

The second-sound wave is generated in a low-
power cw resonant cavity which is excited at
various harmonics, and the width of the reso-
nance at each harmonic is measured by quadra-
ture phase-sensitive detection. Absolute mea-
surements of T~-T accurate to +10~ deg are ob-
tained from the observed u, (T) at each point.
The cavity is immersed in a superleak-purified
He4 bath which is enclosed within another bath
for better temperature regulation and stability.
Power input density to the cavity is monitored
and kept typically less than 2x10 ' W/cm' in
order to avoid nonlinear effects near T~. For
several power input levels the resonance widths
are time-averaged, and the limiting zero-power
resonance width at each harmonic is obtained for
various temperatures within the critical region.
To test for possible systematic effects, two dif-
ferent cavities are used. The cavities are formea
by spacing flat lavite or quartz surfaces with
fused quartz spacers, and the temperature wave
is generated and detected by thin films of silver
and carbon. In addition to bulk attenuation, re-
flection loss and diffraction (beam spreading)

loss give rise to enlarged resonance widths.
These other effects are also investigated as a
function of power, frequency, and temperature,
and corrections made to the observed resonance
widths-introducing a corresponding error. The
second-sound damping coefficient D~(T) is de-
fined in terms of the bulk attenuation o(&o, T):

n((u, T) = ((u'/2u, ')D, (T),

where classical superfluid hydrodynamics' indi-
cates that D, is frequency independent. This is
also true of the dynamic scaling theories for
k $ «1. The observed resonance width &~n
(width at half-amplitude) corresponding to mode
number n for a cavity of this type (&u„=no&1) is
given by the sum of three terms:

n

E2 d'

2P 4'
D~+ (d~+ 2 (d~

m end, (2)

where the first term corresponds to the bulk at-
tenuation; the second and third terms correspond
to reflection loss and diffraction loss, respective-
ly. P = -lnR where R is the reflection coefficient,
and v, (T) is the fundamental resonant frequency
(n =1). The dimensions of the cavities (width dp,
spacing d) were chosen to minimize any correc-
tions due to diffraction. The measured reflection
coefficient of the lavite cavity is 0.94 and for the
quartz cavity 0.97. This agrees well with other
measurements' in cw cavities, at lower temper-
atures. Equation (2) shows that this correction to
b~ varies with temperature through ur, (T). At
n =20, this reflection-loss correction to the ob-
served resonance widths varies from 10' at
10 ~ deg below Tp to 50% at 3 x10 ' deg below

The power dependence of the width (for 10-
30 pW/cmm) is found to be linear and is apparent-
ly singular at T~, s ~to, /sP varies between 0.3
Hz (iLW/cm') ' at 10 ' deg below Tg and 4x 10
Hz (pW/cm') ' at 10 ' deg below Tg. This is in
good agreement with other measurements'~' at
higher powers and lower temperatures. Sh&u„/
&I' increases approximately linearly with fre-
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quency, and approaches zero for P &10 pW/cm~
within the critical region. The small error in
extrapolating ~~ to zero power is used in the
determination of total error. Equation (2) indi-
cates that data for 4~~ over a sufficient range of
both n and &u, (T) give data for D,(T). As a check
the third term may be calculated, and the re-
sulting values agree with the measured diffrac-
tion data to better than 10%. However, this dif-
fraction correction is negligible over the temper-
ature region covered in the D~(T) data.

The classical u dependence of the bulk attenua-
tion n (&u, T) in Eq. (1) may be checked near Ty by
observing Et'„ for various n near Ty where (u, (T)
is small. Figure 1 shows the observed zero-
power resonance widths in the quartz cavity, for
T=1.6&&1 0' deg below T~ and &u,/2w=270 Hz,
plotted versus n~. The n~ dependence of ~~„at
large n (where P is wave-number independent)
seems to be valid near Tp, indicating that D2 is
n-independent over this range of frequencies, in
agreement with both classical' and scaling' 3

theories. The intercept at n =1 of the large-m as-
ymptote gives the reflection loss; here P =3%.
The slope of the asymptote is proportional to the
damping Dm(T). For each such plot of A~„vs n~,

the corrected value of A~mp is obtained and the
damping D2 computed. For temperatures farther
below Tl„where &u„(T) is large, the percent cor-
rection to b~~p due to reflection loss becomes
larger, and the error in D~(T) becomes relative-
ly large for (T&-T) &5x10 ~ deg K Diffraction
corrections become important only for (T~-T)

70

&10~ deg K Crosstalk plus noise limit obser-
vation to (Tp-T) &5&&10 ' deg K From a series
of graphs like Fig. 1, the damping D~(T) is ob-
tained as a function of temperature in the criti-
cal region.

Figure 2 shows the data for the second-sound
damping coefficient D~(T) for several tempera-
tures within the critical region. Also included
in Fig. 2 are data of Hanson and Pellam' extend-

ing out of the critical region which were obtained
using a different method, and two points of No-
tarys' from megahertz cw cavity-resonance data.
Thus, both relative and absolute damping may be
compared. If our data are fitted by a power-law
function, we obtain

D =D (1-T/T ) (3)

with 0 =0.34+0.06 and D, =1.02&10~ cm' sec
The extrapolated value of Dm(T) to the edge of the
critical region overlaps the absolute attenuation
measurements of Hanson and Pellam and the
resonance data of Notarys. ' If these additional
data are used in the fit with Eq. (3), reduced er-
ror results (@=0.34+0.03), but this procedure is
risky, because of possible differential systemat-
ic errors. Outside the critical region, D,(T)
should level out and approach the nonsingular
Khalatnikov value' &' at lower temperatures. This
is apparent in Fig. 2 for (T~-T) & 4 &&10 2 deg K.
In addition to the linewidth data, measurements
of the signal amplitude were taken at each point.
These data, when scaled to input power, are
consistent with all the resonance-width results.

The experimentally determined exponent o
=0.34+0.06 is not an asymptotic value. It is the
apparent exponent for the region between 7 &10
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FIG. 1. Plot of the observed resonance width of the
nth harmonic at half-amplitude, A~n /27I, versus the
square of the harmonic number n for a single temper-
ature 1.6 x10 deg below T&. The ~ dependence of

n is predicted by classical superfluid hydrody am-
ies and by dynamic scaling for k$ «1. The zero-fre-
quency (n = 0) intercept is proportional to the reflec-
tion loss. Slope is proportional to the damping D2.
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FIG. 2. Data for second-sound damping D2(T) near
Tg. Our data: solid circles, quartz cavity; open cir-
cles, lavite cavity. Data of Hanson and Pellam: open
triangles. Notarys' data: solid squares. Outside the
critical region, for (T&-T) &4x10 deg, D2(T) reach-
es the Khalatnikov minimum. Solid line has slope -3.
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and 4X10 ~ deg below T~. Although Ferrell et
al. ' predict Dz(T) - 8"z, which - (T~-T) '~' for
all T in the critical region, more recent dynam-

ic scaling theoriesa~' indicate D2-u25 -(T~-T)
where o =o(T) because of the presence of Cp
in the second-sound velocity": u2-(Tp-T}@(T}
yields the theoretical prediction D2- (Tp-T)
for 5 x10 ' &(Tp-T) &5 X 10 ~ deg K In sum-

mary, both dynamic-scaling theoretical esti-
mates for the exponent of second-sound damping
(@=0.33, 0.28} agree to within experimental er-
ror with our result 0 =0.34+0.06.

The coefficient D, in Eq. 3 is also interesting
because, according to dynamic scaling, it con-
tains information about the coherence length
coefficient $0 in the relation g(T) = &0(1-TlTg)
Ferrell and co-workers' rough calculation' of

D, =10 ' cmi sec ' is far from the observed val-
ue. However, they calculate D, for the limit
~ &a*, where the dispersion relation (ok -k '
obtains, and also use a value for $, (0.27 A)
which is -', the latest estimate" ~" $, =1.2 A. We
repeat this calculation of D, for the conditions k$
«1, e &u* obtaining in this experiment. Using
the same frequency scaling idea' ' for the limit co

&~*,&ok -k+ ~ ~ ~, a similarly rough calculation
using' (k)=1/$ and DPa=2&u~, with &u*=uzg

gives D, =10 cmI sec ', closer to the experi-
mental value.
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