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With Eliashberg's equations for the two temperature Green's functions of a supercon-
ductor, the effect of real phonons on the transition temperature T~ is discussed. The
equation derived for T~/T&0 describes a temperature-dependent pair-breaking mecha-
nism that depends on both the real and the imaginary part of the electron-phonon self-
energy (T~o =transition temperature in the absence of real phonons).

At finite temperatures, low-energy excitations
such as acoustic phonons are thermally excited
in a metal and interact with conduction electrons.
In the normal state this interaction gives rise to
a temperature dependence of the electrical resis-
tivity. In the superconducting state this interac-
tion, by virtue of its dynamical character, af-
fects the energy gap and in particlar the transi-
tion temperature Tc. The electron-phonon (el-
ph) interaction is usually described by Fr5h-
lich's Hamiltonian which commutes with the
time-reversal operator K for spin-2 particles.
This Hamiltonian, however„depends on time-de-
pendent phonon operators. Therefore, the theo-
rem of Anderson' and Maki' does not apply, ac-
cording to which T~ is unaffected by a perturba-
tion that conserves time-reversal symmetry and

!
is static. It is the purpose of this brief paper to

& (e, p) = 8(e, p)8(e, p)z&(e, p; T), (2)

where

study the effect of thermal phonons on T~ under
the assumptions that (A) the mechanism for su-
perconductivity, to begin with, consists in the ex-
change of virtual phonons between conduction
electrons and (B) a mechanism other than the el-
ph interaction causes superconductivity.

(A) The mathematical problem of determining
Tc consists in solving the Eliashberg equations
for the two Green's functions of a superconduc-
tor for temperatures T & Tz. Near T~, the for-
mal solutions of these equations are in the nota-
tion of Abrikosov, Gor'kov, and Dzyaloshinski'
given by

8(e, p) =~«-$(p)+Z~(e, pj T)]

Z (e, p;T) =T(2w) 'Q Jdk8((u, k) @(e-(u;p-k),

Z (e, p; T) = T(2v) Q fdkF (&u, k) $(e ur, p-k-). (4)

Here &u = (2m + 1)m T. The el-ph coupling constant
g' is contained in the phonon Green's function u.
The electron Green's function 8 in the normal
state depends on T through the variable e = (2n
+ l)mT and through the T dependence of the self-
energy Z~. The latter is due to the change of
electron and phonon occupation numbers with T.
Because of the T dependence of Z~, the pairing
energy in the superconducting state Zg has an
additional temperature dependence, beyond that
which is of the BCS form.

To solve the linear integral Eq. (4), after elim-
inating the momentum dependence of Z~ with a
quadrature, 4 7 Swihart, Scalapino, and %ada'
and %'u' have applied an interation method.
Their result for T~ contains the effect of ther-
mal phonons. The transition temperature in the

absence of thermal phonons T~O is not evaluated
by these authors. To find Tco, one must replace
Z~(e, p;T) in Eqs. (3) and (4) with Z&(e, p;0),
where Z~(e, p; 0) is the self-energy in the limit
T = 0 (see Ref. 7, p. 200). Whether this numeri-
cal calculation has been carried out is not known
to us.

In this Letter a simple analytical expression is
derived for Tc/Tc0 which accounts for the tem-
perature dependence of the real and imaginary
part of Z~. The analytic continuation of the
self-energy has been calculated by AGD' and the
result can be written in the form

ReZ (e,P; T) =[m-m*(T)]m

lmZ (e,p; T) = (sgne)/27(e, p; 7),Fs
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where

m —m +(T) g' m -2pF, t+~ 1—tanh'x
qdq e'(q)PJ (2Tx)'-~, ( )

dx,

e T
1 1

u)(q)/T e/T (u(q-)/T [e (u(q-)]/T
T e,p;T 4vp „, e —1 e +e e + 1

(8)

The el-ph scattering time given by the last equation is exactly equal to the cyclotron-resonance relax-
ation time in the theory of Azbel' and Kaner. 'o Equations (5)-(8) give the self-energy for electrons in
the vicinity of the Fermi surface. In this approximation the retarded Green's function is given by"

G =a/[e-=(p) +ia/2T],

where ==a) and a =m/m*(T). From the retarded Green's function GR, one finds the thermodynamic
Green's function g in the manner described by AGD. ' If one inserts this g into the equation for F+,
the energy-gap equation near T~ becomes

T " a'Z (&u, k;T)
Z (e, p; T) =( „), dkK)(e-(o;p-k), , „-),(dg+" (k

where q=l+a/2T(T)j&u). T(T) is givenby Eq. (8). To solve this equation, we make the BCS approxi-
mation and take &= —g'. Correspondingly, ZS becomes a constant and Eq. (10) becomes the defining
equation for Tc. It is of the same form as the T~ equation derived by Gor'kov and Abrikosov" in
studying the effect of paramagnetic impurities on superconductivity.

The solution for Te is of a simple form in the special (though unreal) case where Tep»eD (=Debye

temperature). The point is that at temperatures T»eD, the real part of the self-energy becomes
small, m*(T)-m. If one ignores ReZ~, the result for Te is given by

(T
=y(l+ )-y(!) (T»e ),

where g(x) is the di-gamma function and x = ,vTeT(Te). T-he transition temperature in the absence of
thermal phonons is given by the BCS-Gor'kov formula Tep = 1.148D exp[-1/(X- p, *)], where X = i@(0)g'
and p, * are the el-ph and Coulomb coupling constants, respectively; N(0) =mPF/2v'.

In real superconductors T~ & 0.1eD and, therefore, the real part of the self-energy must be taken
into account. Its temperature dependence is according to Eq. (5) determined by m (T) (see Fig. 1).
If one includes ReZ~, the equation for T~ becomes

1 1
0

i , = g(-,'+y)-g(-,') (general case),
[lq(0) V] [&(0)V]

(12)

where [N(0)V]BCS =a(T)&-p* and y =a/4vTcT. In the absence of thermal phonons, the transition tem-
perature Tep = 1.14eD exp(-1/[1V'(0) V]BCS'J. This formula for Tep is similar to that found by McMil-
lan' for strongly coupled superconductors. The solution of Eq. (12) is plotted in Fig. 2 as curve A,
using the approximation g(~+y)-P(g) = ~v'y. To summarize, the effect of thermal photons on Te is at
most of the order of 20% corresponding to the unreal case where Tep/BD =0.3. In real and strongly
coupled superconductors the effect is a few percent. As examples let us consider Pb and Nb~Sn.

According to Eq. (12), Te depends on four parameters: &, p*, a(T), and 7(T). For lead we take X
=1.3 and u~=p. l. The function a(T)=m/m*(T) is determined from Fig. 1. The scattering time 7(T)
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FIG. 1. Temperature dependence of the renormalized electron mass m*(T) defined by using Eq. (5) for the real
part of the el-ph self energy.

is found from the equation

7(T) =17.3(T/B )'7 (T), T«8.
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FIG. 2. Effect of thermal phonons on the transition
temperature. Curve A (phonon mechanism) presents
the solution of Eq. (12) 8 = eD. Curves B and C (non-
phonon mechanism) present the solutions of Eq. (17)
for 8/co=1 and 8/eD=2, respectively; the el-el in-
teraction is attractive in a shell of thickness 2e around
the Fermi surface. The interaction between electrons
and thermal phonons is in both cases B and C charac-
terized by the el-ph coupling parameter A, = 1.

where

8' (&u, k) = 8 (v, k) g (-&u, k) [6 + P (e, k) ], (15)

Here the transport time Ttr is determined by the
electrical resistivity p = se'7tr—N(0)v p' where v F
=PF/m. From Van den Berg's resistivity mea-
surements on lead" one finds 7(Te = 7.2'K) = 1.15
x 10 "sec, in good agreement with the theoreti-
cal value of 1.8x 10 "sec that follows from Eq.
(8) with a =1.3. With the experimental value of
7(Te), one finds the result that (Te0 Te)/Te0-
= 0.031.

On the other hand, for Nb, Sn the pertinent pa-
rameter a(Te)m/8Tet(Tc) has the unrealistic val-
ue of -2 if one assumes that T1 =Ted. The scat-
tering time Tgd is found from the experimental
resistivity values of Cohen, Cody, and Halloran'4
using the relation psd = s e'Ysd&s(0)v F s", Ns(0)
is the density of states at the s part of the Fermi
surface and is by a factor 50 smaller than densi-
ty of states at the d part; vps-10' cm/sec. It is
obvious that our assumption T1 = Tgd ls wrong if
the d electrons govern superconductivity, "and
not the s electrons which carry the electric cur-
rent in the normal state.

(B) To discuss the effect of thermal phonons on
T~ when not the el-ph interaction but a mecha-
nism of the type proposed by Matthias' for tran-
sition metals (d-shell polarization) leads to su-
perconductivity, let us presume a Hamiltonian of
the BCS-Gor'kov form. ' The el-el interaction is
attractive in a shell 2(d around the Fermi surface
and the coupling parameter is K'. The energy
gap equation near T~ is given by

n, = ~'T(2s) 'Q fdk P+((u, k), (14)
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with g given by Eq. (1). Let us assume that g'«x'. Then, at the Fermi surface one has

/6 =A. ln(1. 148 /T ).c

With Eq. (15), the defining equation for Tc is found from Eq. (14) in the form

T a (T )-a(0) 1
c0 c

T a(T )a(0) x N(0)[1+i ln(1. 148 /T )]

where a and y are the same parameters as in Eq. (12) and where

T = 1.148 exp(-1/x'N(0)[1+X ln(1. 148 /T )]).c0 D c

For two cases, &u/~D =1 (curve A) and ~/&D =2
(curve B), the solutions for Tc/Tc0 are plotted
in Fig. 2. A realistic value is chosen for the el-
ph coupling constant, namely X = l. It is seen
that the interaction between electrons and ther-
mal phonons does not preclude the occurrence of
room-temperature superconductivity but can re-
duce Tc0 y a factor 2 if Tc0 6
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