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A calculation of the Kj3 form factors is done on the basis of current algebra, partial
conservation of axial-vector currents (strangeness conserving), and dispersion rela-
tions. Assuming once-subtracted and unsubtracted dispersion relations for f, (g% +f_(g?)
and f+(q2)—f_ (¢Y, respectively, and K* dominance, the K3 decay parameters £, A,, and
A_ are calculated. All results are consistent with the present experimental indications.

There has been a considerable number of theo-
retical discussions!~¢ of the K;3 form factors on
the basis of current algebra and partial conser-
vation of axial-vector currents (PCAC) (or their
variants). It seems, however, that the present
theoretical status of the K;3 form factors is still
far from being free from confusion and uncer-
tainty. We shall report in this note a calculation
of these form factors from the dispersion point
of view, using the PCAC and current-algebra re-
sult to fix the subtraction constant in a once-sub-
tracted dispersion relation for the combination
f+@®) +f_(¢?). 1t is felt that the present calcula-
tion is probably less subject to the uncertainties
and ambiguities that plagued, to varying degrees,
some of the earlier calculations.

The basic relation for the K;3 form factors in
the approach based on PCAC and current algebra
is the Callan-Treiman-Mathur-Okubo-Pandit
(CTMOP) relation’:

f M A4S (M D)=F JF_, M

which holds at the unphysical point g% = -Mg?,
where ¢? is the momentum-transfer variable and
f,(g%) are the usual K;3 form factors (to be de-
fined below). In order to derive reliable infor-
mation concerning the physical form factors, one
must have a “suitable” procedure of analytically
extrapolating the soft-pion current-algebra re-
sult (1) from the unphysical point to the physical
region. A natural choice of such an analytic pro-
cedure is provided by the dispersion approach.
In particular, we shall adopt in our present cal-
culation the point of view forwarded by Okubo
and his collaborators,” and in a slightly different
context by Fubini and Furlan.® The basic point
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is that the soft-pion current-algebra result pro-
vides the subtraction constant, if a once-sub-
tracted dispersion relation is assumed for the
appropriate amplitude. As we shall see, we can
in our calculation always keep the kaon momen-
tum on the mass shell and thus avoid the poten-
tially unreliable large mass extrapolation inher-
ent in the use of the PCAC for the strangeness-
changing axial-vector current.

Traditionally,® unsubtracted dispersion rela-
tions are assumed for the K;3 form factors (and
for other form factors, such as the m;3 form fac-
tor and the pion electromagnetic form factor,
etc.). However, it has recently been realized*?
that the assumption of unsubtracted dispersion
relations may be too restrictive, and in a few in-
stances leads to paradoxical results. We do not
know whether a subtracted dispersion relation is
necessary in the case of Kj3 form factors. Not-
withstanding, the use of subtracted dispersion
relations, provided a knowledge of the subtrac-
tion constants is available, definitely offers bet-
ter hope for a reliable calculation, since practi-
cally in every calculation use has to be made, in
one way or another, of the assumption of domi-
nance by the low-lying states. In a calculation
based on unsubtracted dispersion relations, as-
suming their validity, the effects of the continu-
um and the high-lying excitations are hard to es-
timate, although they may in fact be important.
If subtracted dispersion relations are used, most
of these effects are presumably effectively rep-
resented by the subtraction constants, and the
contributions to the dispersion integral from the
high-lying states are suppressed. This makes
the dominance of the dispersion integral by low-
lying states a better approximation.
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Denoting the K;3 hadronic matrix element by

a1y KO =277, 6D, vk )47 D)o~k L, @)
where g =p-k, we shall assume once-subtracted and unsubtracted dispersion relations for

f1@®)=7,@* +f_(q? ®3)
and

f2@®)=1,@*-f_ @), )

respectively. The once-subtracted dispersion relation for f,(¢?) can be obtained following the heuris-
tic argument of Ref. 7. Using PCAC and current algebra, we have, for p®=-Mg?® and £%=0 (but not
necessarily % - 0),

0 &) + -1 v
( (k)'Vu (01K (p)>=Fﬂ (FKp“+k MW), (5)
where
: +
M, i fd4xelk'x(OIG(xO)[AV(no)(x),V“(K Joix* (o)), (®)

and F; and F are the pion and kaon decay constants, respectively. By letting 2 - 0 and p - « such
that p?=-Mg? and ¢ is finite, we obtain

2 2 2 32_ 2_ _ 2
Fp @+My )flmfl(q' ,R2=0,p"=-M %)

K
2 32 2_ _ 2y __=2
1@ k*=0,p*=-M_?) + @@+ M)

K F

dq'®. (7)

If, in the spirit of PCAC, we assume that the form factor f1(¢?, #% = -M,?, p* = -M *) is not appreciably
different from the off-mass-shell value at 22=0, then (7) can be taken as the once-subtracted disper-
sion relation for the physical form factor. We note that the CTMOP relation (1) is obtained from (7)
by setting ¢%=-Mg?>.

In addition to the once-subtracted dispersion relation (7) for f,(¢%), we assume an unsubtracted dis-

persion relation for f,(g?): |
in g2, (9) and (10) yield

) Imfz(q 2
q*-q dq’ (®) 2 2
f,@)=f (0)1-x ¢*/M %), (11)
We shall assume!! the dominance of the domi- f_@)=f_ (0)(1'X_42/Mn2), (12)
nance of the dispersion integrals by the K*(890). )
In this approximation, we obtain (neglecting pi- with
on mass)
1 FK GK*GK*KTT
f,(0)=~ N T ) (13)
F 2 2
- M) e (9) T
1 - 2 ’ 0N\/F 2
q* +MK,,) My ro=(; Py CraCpragen Mycn +2M
3 Z (14)
G 01, +0 ) w e e
a2 kkr Vaer Vg (10) GxG M *
’ K* K
Mg, @ +MK*) Ay o (0)= < — “Kn >(M 2>, (15)
K* K*

where Gg* and Gg*grn are the coupling constants G. .G M2\ /M2
defined in the usual manner, for K*- 0 and K* K* K*
nner, for n x_ f_(0)~ _< K Krr>( K )( T 2>' (16)

- K+m, respectively. When expansion is made MK,,2 MK*Z MK*
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On the basis of the Ademollo-Gatto theorem,'?
we shall assume

f,0)=1, (17)
which is believed to be correct to within a few
percent.® Using (17), we can express the three

K3 decay parameters £, x,, and x— in terms of
a single parameter, which is the empirically

known ratio Fg/Fy:
M 2
)( > (1+2MK2>, (18)

f_(0)
SO (
+ K*
F M_2\/M?
K K m
gx'=_<—F”>(M =>(M 2>' (20)

K* K*

(19)

It is clear from (18) and (20) that ¢ and £x_ are
both very small, and the value of A_ is extreme-
ly sensitive to the ratio Fg/F, [and to the SU(3)
symmetry-breaking effect on f,(0), in view of
our use of (17)]. Taking'

F_/F =1.28 (or 1.26) (21)
K 7

we obtain the following numerical values:

£=0.06 (or 0.03), (22)

A, =0.017 (or 0.018), (23)
_=-0.09 (or -0.18), (24)
gx_=-0.005 (or —0.005). (25)
Thus, a_ could well be considerably larger than

A4, Wwith a distinct possibility of being an order
of magnitude larger.

Expenmentally, while the averaged K;3 + and
Kl3 value for A, is given by'®

A, =0.019:+ 0.0086, (26)

in agreement with our calculated result (23), re-
liable values for ¢ and a_ are still lacking. It
seems to be the present consensus that ¢ is
small, and the analysis of Auerbach et al.'® in-
dicates the possibility that A _ could indeed be an
order of magnitude larger than x,. It is of great
interest to have an experimental clarification of
these points.

Our results are in qualitative agreement with
those of Lee,® which are obtained on the basis of
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broken SU(3) chiral dynamics and the field-cur-
rent identity, but at variance with the usual pole-
dominance calculations?'? based on unsubtracted
dispersion relations. The difference between the
latter calculations and our present one lies in the
fact that we may have effectively taken into ac-
count the effects due to the high-lying states by
using a subtracted dispersion relation. In this
regard, it is worth mentioning that the small-
ness of £ and consequently the large value for a_,
as is clear from (14), results from a cancella-
tion'® between the contribution from the low-lying
K* state and the contribution from the high-lying
states, the latter contribution being effectively
represented by the subtraction constant, which
is learned from current algebra and PCAC.

It is a pleasure to thank Professor B. W. Lee
for an illuminating discussion.

Note added in proof. —The problem of extrapo-
lation of the CTMOP relation is discussed in a
preprint by Ademollo, Denardo, and Furlan.'®
Subtracted dispersion relations are used to dis-
cuss the K;3 form factors by N. Fuchs.?
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The treatment of a weak # channel by the usual prescription of exchange degeneracy,
based on a potential-theory model, is shown to violate crossing badly. On the other
hand, a crossing-symmetric treatment of the same situation would lead to backward
superconvergence relations, which provide the basis for a new prescription of ex-
change degeneracy. Several consequences of this crossing-symmetric prescription of
exchange degeneracy are discussed, with particular reference to NN scattering.

It was pointed out some time back that the low-
lying mesons (7, 1, p, w, and ¢) fail to saturate
the superconvergence relations for backward NN
scattering.! In fact, for some of the supercon-
vergent amplitudes all these contributions were
shown to be adding up. It was then suggested that
one should expect an equally significant coupling
from the axial-vector and tensor mesons in or-
der to match the above.? In this note we shall in-
voke the idea of exchange degeneracy in order to
suggest that the major cancellation should indeed
occur between the exchange-degenerate partners®
—between 7 and B, p and A,, w and f, etc. This
will then give a relation for each pair of resi-
dues, which is significantly distinct from the de-
generate residue functions postulated by Arnold*
and Ahmadzadeh® on the basis of a potential-theo-
ry analogy.

To illustrate this we consider a hypothetical
situation where there are no low-lying single-
particle states in the # channel. It should be not-
ed that, in view of the weak couplings of the deu-
teron and the virtual singlet state, the physical
NN scattering is not far from this ideal case. In
such an ideal situation, all the «-channel spin-
parity amplitudes (and their first few moments)
should be superconvergent for fixed «=0. Thus

l

one can form a combination which singles out a
pair of exchange-degenerate partners in the s
channel, as for instance the combination corre-
sponding to the s-channel spin-pairty amplitude
fa(s,t,u), which singles out the p-A, pair.® Then
there must be cancellation between these ex-
change-degenerate partners in order to ensure
superconvergence for such amplitudes. In the
narrow -resonance approximation this gives a
sum rule between their coupling constants, since
any representation for writing down the s-chan-
nel Regge contributions to the s-channel disconti-
nuity of the scattering amplitude reduces to the
Breit-Wigner form in the narrow-resonance ap-
proximation. We consider as an example the
contribution of p and A, trajectories to f,(s, ¢, 0)
in the usual Regge representation. We have

[1-exp(ira )]

Talo: 100 8,00 i P 0 (1A )

x [1-exp(ira , )]

Imf,(s,t,0)= ﬂp(S)Pap(-l){[—ﬂap’(S-mpz) +i€]"‘[-ﬂap'(s —mp”)-ie]’l}

By SIP,, (=il

2

- a2 -
2sin1raA2 aAz( 1. )
In the narrow-resonance approximation, this
gives an s channel discontinuity
_ 2\ +5e]= = _ AP P et
aAz(s "4 ) +i€] [waAz(s mAz) ie]™}. (2)
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