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THERMAL CONDUCTIVITY OF He I NEAR THE SUPERFLUID TRANSITION

Guenter Ahlers
Bell Telephone Laboratories, Murray Hill, New Jersey

{Received 21 August 1968)

The thermal conductivity of Hel eras measured at saturated vapor pressure from 10
'K to 5 x10 'K above T~. The results agree in detail with dynamic scaling predictions
and yield a critical exponent of 0.334+0.005. The prediction is &.

The purpose of this communication is to pre-
sent high-resolution measurements of the ther-
mal conductivity z of He I near the superfluid
transition temperature Tg, which agree quantita-
tively with a recent theoretical prediction' based
on an extension ~' of the Widom-Kadanoff scaling
laws'& to dynamic processes. The data cover the
temperature range 10 ''K~t 5~10 ''K, where
t =T-Tg, and constitute a reduction by one order
of magnitude of the minimum value of t at which

any property of liquid helium has been studied. ' '
Accurate experimental information on trans-

port properties near critical points is very limit-
ed, and for the helium A. point only qualitative
confirmation of dynamic scaling laws exists. Al-
though Ferrell et al. ' assert that the thermal con-
ductivity measurements of Kerrisk and Keller'
are "sufficiently good to provide a rigorous test
of the theory, "the critical exponents derived
from those data' range from 0.2 to 0.7, whereas
the prediction is 3. Therefore the data of Ker-
risk and Keller, although they yield the very im-
portant experimental information that tc diverges
near Tg, cannot be interpreted as a quantitative
confirmation of dynamic scaling. The present
data do yield this confirmation and result in a
critical exponent of 0.334+ 0.005.

The measurements were made by the "parallel-
plate" method in a cylindrical cell, 0.95 cm long
and 0.93 cm in diameter, with 0.015-cm thick
stainless steel walls. This cell was attached to
the bottom of a liquid-helium reservoir of 80-cm'
volume. The entire assembly was suspended in
virtual thermal isolation in a vacuum inside a
liquid-helium bath and could be filled through a
capillary. The large reservoir, when filled with
helium, served as a heat sink and assured ther-
mal stability. A controlled heat leak from the
reservoir to the bath compensated for the power
dissipated in the system during measurements
(=10 W). The temperature drift of the system
was constant to +5x 10 ' 'K/h, and when neces-
sary could be reduced to 10 8'K/h. The thermal
gradient across the sample cell was measured by
a differential thermometer consisting of two car-

bon thermometers which served as two arms of
an ac bridge. At a thermometer power of 9& 10
W a differential temperature resolution of 5
X 10 ' 'K was possible. A second thermometer
was used to measure the temperature at the top
of the cell. The thermal gradient across the cell
was caused primarily by the power dissipated in
the member of the differential thermometer lo-
cated at the bottom of the cell. Comparison of
results at two power levels indicated a parasitic
heat input to the bottom of the cell of 0.76~10
W. Measurements using the full length of the
cell were made at power densities of 4X10 ' and
14X 10 ' W/cm', and cover the range 3 && 10 ' 'K
~ t 4X10 ' K. The smallest accessible value
of t is dictated by the thermal gradient which re-
sults when the top of the cell is at T~. The upper
limit for the range of measurements is deter-
mined by the density maximum at t=6x10 ''K.
Above this temperature, there was heat transfer
by convection. Each measured value of w was as-
signed to a value of t corresponding to the rnid-
point between the two end temperatures. Appro-
priate curvature corrections were made. The
cell had been designed deliberately with a large
length-to-area ratio so as to minimize end effects
due to possible differences in Kapitza resistance
between He II and He I and other unknown sources
in He I. A discontinuous increase by a factor of
2 at Tg of the measured Kapitza resistance in
He II (2.4'K W ' cm ' at f = -4& 10 "K) would be
a negligible correction to the measurements in
He I. The thermal conductivity of the walls can
be assumed to be temperature independent over
the range involved here, and makes an additive
contribution of 7.5&&10 ' W cm 'K to the
measured value of tc. The results are shown as
open and solid circles in Fig. 1. The data as
shown include any contribution from wall conduc-
tion.

The range of the measurements was extended at
a power density of 4X 10 ' W/cm' by utilizing the
effect of the gravitational field on the superfluid
transition. ' The sample was cooled at constant
rates varying for different runs between 8&10
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FIG. 1. The logarithm of the thermal conductivity K

as a function of the logarithm of 7' —Ty.

'K/h and 2x 10 ' 'K/h, starting at a temperature
at which the entire sample was above Tg. These
cooling rates were sufficiently small to maintain
essentially an equilibrium temperature gradient
in the sample. %hen the transition temperature
at the top of the sample was reached, there was a
discontinuous change in the time derivative d(AT)/
dr of the temperature difference &T across the
sample because the length I of the Hel sample
discontinuously started to decrease. ' %hen the
interface between He II and He I reached the bot-
tom of the sample, d(AT)/d7' continuously van-
ished even though dl /d7' vanished discontinuously.
This is shown in Fig. 2. The continuity of d(AT)/
dT is already indicative of a divergent thermal
conductivity in the vicinity of t = 10 ' 'K. Results
obtained for K in the two-phase region, after ap-
propriate curvature correction, are shown also
in Fig. 1. The dashed lines over the range t
&10 ''K indicate the possible systematic errors
due to systematic errors in L.

The specific prediction of dynamic scaling to be
tested here was first made by Ferrell et al. ,
who asserted that the diffusion constant D should
diverge at T~ according to

gj —K/pC $
jj2

p
p S

where p and pz are the total and superfluid densi-
ties, Cp is the heat capacity at constant pres-
sure, and g is a correlation length for the fluctu-
ations of the order parameter. A more precise

FIG. 2. The temperature difference across He I, and
the length of the HeI sample (inferred on the basis of a
constant cooling rate), in the two-phase region as a
function of time. This figure covers about the last @
of the two-phase region (0.1 cm or 10 7'K). The pow-
er density was about 10 ~ W/cm2.

expression which follows from the relation be-
tween the critical frequencies for e and —e (e =t/
T~) 0) predicted by a dynamic scaling is'~"

[K(f)/pC (E)]$ (E) =AC ( 6)$ -( 'e). -
p 2

Here A is a numerical constant of order unity;

7 $2( e)p ( e) 1/2
S

C,(-e) =

p
p (-e)C (-e)

(2)

is the hydrodynamic expression for the second-
sound velocity; S is the entropy; pn is the nor-
mal-fluid density. The correlation lengths for
HeII and HeI are given by

v/
5(- )=h. 'I I; (( )=&. (4)

where a constant background term tc' has been
added, and where the dynamic-scaling prediction

On the basis of static scaling, v= v' and ps-( ~(-e).
From the measured p~, &' v'= &. Thus, it fol-
lows from Eq. (2) that

1

K =B{S(- )C e(E)/[p (-f)C (-E)] ) t
P n P
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3X=2V-2V
~ (6)

which is equal to 3. The constant & is given by

(395)(1 43)1/2 3I2T1I2T u3A$ 2($ I)—1

0 0

045

=—50.4A) ($ ')
O

when the specific heat and the entropy are in

units of J mole-i oK-i x

The data were fitted by a least-squares method
with Eq. (5), permitting B, x, and z' to vary
For this purpose, recent measurements of Cp

'
and ps/p ""were used and 8 was taken as 62.4
cm bar mole 'K at & = Q. Appropriate
weights based on the estimated probable error of
each point were used, and 7.5X10 '% cm 'K

was subtracted to compensate for wall conduc-
tion. The analysis was limited to the single-
phase data (t&3X10 ''K) and to t &10 ''K. For
larger values of t, appreciable deviations from
Eq. (3) occur (see Fig. 1). The resulting param-
eters are

tc' = (—6 + 2) x 10 ' W cm 1 'K

A),3($,') '=(0.87+0.06)xl0 ' cm,

x = 0.334+ 0.005. (8)

Here the uncertainties are standard errors. The
solid line in Fig. 1 corresponds to Eq. (3) with
these parameters. It is evident that the predic-
tion of K based on dynamic scaling is confirmed
over the entire temperature range 10 ' t ~ 10
K.
It is worthwhile to emphasize the importance

of the logarithmic terms in Eq. (5) which origi-
nate from Cp. Since inc does not vary strongly
with e and asymptotically corresponds to a criti-
cal exponent equal to zero, there may be a ten-
dency to neglect the temperature dependence due
to Inc for e &0. In expressions like Eq. (5) this '

can lead to noticeable errors in the derived criti-
cal exponent. Recently, Pearce, Lipa, and
Buckingham" elaborated upon this point. To
demonstrate the effect and the existence of the
logarithmic terms, Eq. (5) was used to calculate
an apparent critical exponent given by d Inv/d int.
This apparent critical exponent as a function of
loggpt is shown in Fig. 3. Shown for comparison
is the apparent critical exponent resulting from
a more approximate relation given by Ferrell,
et al.""Apparent criti"al exponents were com-
puted also from the data by a least-squares
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FIG. 3. The apparent critical exponent resulting from
neglect of the logarithmic contributions to the thermal
conductivity. Circles indicate experimental data.

method, using limited ranges in t for each point.
These are shown as well. It can be seen from
the temperature dependence of the apparent expo-
nents that the logarithmic terms do indeed exist
in the expression for v, and that their neglect in
any accessible temperature range can lead to ap-
preciable errors in the determination of the real
exponent. It is clear that Eq. (5) is a better ana-
lytic form than Eq. (1) over the experimental
temperature range. The accuracy of Eq. (5) is
somewhat surprising, Swift and Kadanoff" ex-
pressed the belief that "scaling arguments are
not good enough to give logarithmic terms cor-
rectly. '

Although dynamic scaling predicts only the
temperature dependence of ~, and additional as-
sumptions about Ag, '($, ') ' are required to esti-
mate theoretically the magnitude of z, one can
attempt to compare A$, '(go') ' with $o'. Esti-
mates of g,

' range from 0.3&&10 ' cm to 1.2
x10 ' cm. 17~" Thus, Ag, '($, ') ' is likely to have
a value between 0.7 and 3.2, indicating the likeli-
hood that A=1 and $, =(,'. At the smallest value
of & accessible to this experiment (5&&10 ') the
length Ag'(e)$ '(-e) has the rather large value
7X 10 cm.

The validity of Eq. (5) is dependent upon the
validity of the hydrodynamic expression for the
second-sound velocity, Eq. (3), which has been
confirmed experimentally by Tyson" for -t ~ 9
&10 ''K, and by Pearce, Lipa, and Buckingham"
for -t ~ 2X 10 ' 'K. The present data can be con-
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sidered as indirect evidence for the validity of
Eq. (3) for -t o 10 'K.

It is apparent from Fig. 1 that z deviates from
its limiting behavior [Eq. (5)j for t ~ 10 'K.
The excess thermal conductivity could be associ-
ated with higher order singular terms. " Also,
it is possible that the minimum in z at &= 10
which was observed by Kerrisk and Keller' is
caused by such higher order terms.

I am very grateful to P. C. Hohenberg for call-
ing my attention to the importance of high-reso-
lution measurements of tc in He I and for stimu-
lating discussions throughout the course of this
wor k.
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QUANTUM KINETIC EQUATION FOR ELECTRONS WITH MAGNETIC INTERACTIONS*

John E. Krizan
Department of Physics, University of Vermont, Burlington, Vermont

(Received 1 August 1968)

We have derived the quantum kinetic equation appropriate to the Darwin Hamiltonian
by a method identical to that given earlier in deriving the classical kinetic equation, with
a redefinition of operators. It is conjectured that the transverse interaction term may
lead, as in the classical case, to a long-ranged effective interaction.

There has been recent criticism' of the use of the Darwin Hamiltonian in the approximate treatment
of relativistic effects in statistical mechanics' ~ as opposed to the use of the Darwin Lagrangian. This
question will be examined in more detail in a forthcoming paper. However, we suggest that if fault is
to be found (and this may not be so), it is more likely to be found in the ring approximation, and not in
the symmetrical treatment of electric and magnetic effects characteristic of the Darwin Hamiltonian.
Thus while the electrostatic interactions are well described within the ring approximation, it may not
be so for the transverse interactions.

But it is clear that the derivation of a quantum kinetic equation follows from a well-defined Hamil-
tonian formulation. As Balescu indicates in his book, ' "

~ ~ the momenta are natural variables at the
molecular level, whereas velocities are more natural macroscopic variables. This is even more true
in quantum mechanics; the velocity has no simple meaning, whereas the momentum is a variable
which can be readily quantized. "
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