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FLUIDLIKE ELECTRON AND ION MODES IN INHOMOGENEOUS PLASMAS*
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(Received 12 August 1968)

Collisionless unstable modes, involving the entire velocity space and not due to Lan-
dau damping effects, are shown to exist in two-dimensional configurations in which the
particle orbits are periodic along the magnetic field lines, where the magnetic intensity
varies along the field, and the particle density gradient is in a perpendicular direction.
One mode is associated with the velocity dependence of the electron excursion frequency
and one with the trapping of ions in the magnetic field wells. Their relevance to labora-
tory and space plasmas is pointed out.

We consider a general two-dimensional equi-
librium configuration for a low-pressure (tl « I)
collisionless plasma in which the magnetic field
magnitude is varying along the lines of force,
and the particle density has a gradient in a per-
pendicular direction. ' We assume that the lines
of force are closed so that the particle motion
along them is periodic. Then we find two types
of unstable modes, one associated with the elec-
tron periodic motion, and one with that of the
ions trapped in the magnetic field wells, ' which
are not due to wave-particle resonance effects
but involve the entire velocity space. In this
sense they can be classified as macroscopic,
and in fact several of their features discussed
here make them suitable to explain modes that
have been observed experimentally and have
been difficult to identify, or, by inferring some
of their nonlinear effects, they may explain cer-
tain cases of observed anomalous diffusion.

Then if E measures the distance along the lines
of force, B = 8(l) indicates the magnetic field, n

=n(r&) the particle density so that e~e
~~

=B/B, —

and eg =—eIi xe~ represents the direction along
which the system is homogeneous. We make use
of the Vlasov equation

sf/st+v vf (e/+m)(S vx+B) v f=0,
V

where the notation is standard. The equilibrium
distribution is chosen' as fo = [n(pg)/(vT)'I']exp(-E/
T), where 8=v~)'+vz', measuring the total parti-
cle energy, and pg, the angular momentum in the
direction of symmetry, are constants of the mo-
tion. Then we look for electrostatic modes such
that Z = -Vy, y = p(r~, l) exp(ikgrg +i&et), with

frequency smaller than the ion cyclotron frequen-
cy (&u«Q). In particular, we consider modes lo-
calized around a point rz= ro such that kg@» sp/
sr&, p(rz, 1) = p(ro, l), and neglect from here on
the rz dependence of P. Then if we integrate Eq.
(I) along particle orbits, we obtain' for the per-
turbed distribution function fj of the species j

x e f e J P(l')dt'),

where the argument of Jo is kgv+Qj =kg(lJ. B)'I'/
0, a function of E, p, being the magnetic moment

vz /B that is invariant along l, l' = l(t') is the
guiding center trajectory as a function of t', and
&u+ =( kgcT&/e Bn)(dn/dr~)-0 is the "diamagnetic"
frequency. Now we consider two limits: one for
the electron mode, with Q~z & (d & u~e, and one
for the ion mode, with + & ~y;(cu~e, where
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~bi z are the average orbit frequencies.
7

Electron mode. —Here we have

e (d

f, ==f . 1- 1- d ' P(i)i T. Oi (u 0

for the ions. For the electrons we neglect finite-
Larmor-radius effects so that J,= 1, and in or-
der to perform the integral in E(I. (2), expand p
in harmonics of the orbit periodicity. So

P(l) =PC (E, p, ) exp(2wint'/T),
(n)

where

I, ~) = (I/~) J P[l(t')]e

and

(E, )(() =2m/t.

Then we have

E1
t = f dl/v, T(E, I )=fdl/v,Il' '

'll
'

FIG. 1. Magnetic field and electric potential profiles
such that 4' '=0.

TQ obtain an effect of the term containing the
"bounce" frequency, we are led to consider
modes with C)'0' =0. For this, if the B(l) profile
is symmetric around each minimum, we choose
P(l) antisymmetric around it. In fact referring
to Fig. 1, we compute the integral foTpt)[i(t)]dt by
splitting it into

and for (d & (db+,

f, =
p f~Ip())-((- ) p

27 4

So we see that if p(l) is antisymmetric with re-
spect to the minimum of B(l), the above integrals
cancel each other. We also have

(n)+ ) 4 exp(in(u t) 1-, (4)
b nw n~

n0

e (d

n. = =n.P(l) 1— 1- I (b.) exp(-b. ), (6)T. i 0 i g

To obtain the dispersion relation, we impose the
quasineutrality condition

a. = fj'.d'v= ff d'v=a,
i i e e'

and notice that because of the integration over
v )), the term linear in (()/(()b in E(I. (4) does not
give a contribution. Then we have

where b; = ~k~'ai'=b0B0'/B', where a; is the ion
Larmor radius and Bo the average magnetic
field. We can see by inspection that, since we
look at the limit & &Qb~, we have to consider b;) 1. Now it is convenient to write a quadratic
form resulting from

f(dl/B)P*(l)[8 (1)-R.(l)] =0

=—n P(l) ~ 1- )I d'vf C"'(E, p)e T e ( (d /~J e
e

C (E, i).)
(n)

exp(eee t)
b nv0

and transform the integration on v to one on )L(,

and F., so that

ffd'v = ~ffdEd p B/) v I,
ll

with a convention that contribution from positive
and negative values of v

ll
are to be added. Then

1056



VOLUME 21, NUMBER 1$ PHYSICAL REVIEW LETTERS 7 OCTOBER 1968

the quadratic form becomes

2 (n) 2

(d Pl
0 " 0

'

be e b ne0
(7)

where we have considered cu&w*e for consistency with our ordering. If we indicate the integrals with-
in brackets, respectively, by A, C, D, we find

(d u) (A) ( T ) ((d )'(A)'( T )' 1 C

cd cd (2D/ i T i ( cd J (2D) 4 T /(2. 7rb0)'I' D

One root (+ sign) corresponds to the well-known electron drift mode with b~ & 1; the other root (- sign)
corresponds to the new mode. We see that one mode is "macroscopically" unstable when

T i A

*e be ( T )' 0'. (CD)'I
I 1+—l(2mb )"' (9)

Notice that this is not a "trapped" particle instability in the sense that it does not rely on 4"'e 0,
as do the modes treated in Refs. 2 and 4 and the ion mode to be discussed. On the other hand, a vary-
ing magnetic field is required in order to make cob dependent on F. and p in such a way that a Landau

type of resonance u =nb can be neglected. This, in fact, by involving only particles with given p, or
E, gives a, smaller contribution' ' (typically -(d'/&ub ) than in the case of a constant magnetic field
where all particles having the same longitudinal velocity equal to the phase velocity of the wave are
involved. We also notice that, as long as &d+e&ur, implying (doe&(dbe or keae&rn/L, we can follow
analytically the instability resulting from Eqs. (7) and (9) through the regime where Im&u- &ub and bf

1, by making use of the cancellation of odd terms in ub when integrating over velocity space. In
particular, when b;«1 and Imago«Qbe, the present instability goes over to the known inertial drift in-
stability. Here we have implied that (dbe -vthe/2L, L being a typical distance between a point of
minimum B and the nearest of maximum B, and defined r„=— n(dn/dr&) -' We recall .that electron
modes that are odd around points of minimum B have been observed on the Princeton linear quadru-
pole. ' In Ref. 3 an identification of these observed modes with the "ballooning" type of mode there re-
ported was discussed. However, for the observed relatively large values of b;Te/T;, the theory of
that mode indicated that the longest amplitudes should have occurred around the point of minimum
field, while the experiment clearly showed maximum amplitude around the point of maximum B. The
mode that we have discussed here does have this feature and is, therefore, compatible with the obser-
vations.

The ion mode. —This is found in the limit (d &Ubl, so that we obtain fdl p'%e directly from E(1. (4),
and considering bi & 1,

(dl 8. e dl ( (d, l "f
~
—q~ —()—]@]'- l l — I dEdp ir i14' —'I'--'[4*"'(b.4)"'+c c l[, (10)B n. T. .„B ( (dl~ n.

where
1

(b.C)~"=-J b.ydl .
T 0 i

So the dispersion relation is

1+—) f dpdE IT I ) i4 . I — b (Jf dpdE lr l(2b ) [4. (b.4)l (n) 2 *i *(0) (o)

(d .&d [ .tc l

2 (n) 2

+c.c.])=,) f dEdpIT I, ). . ,

bi
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or, roughly, if

1&b &(r /L)(1+T /T . )X(YZ)
0 n i e

We notice that this instability, because co &(d&.
and because it essentially requires O' 'WO, is
related to the trapped particle modes that are
driven by the magnetic field curvature't4 which
we have neglected here. More precisely, since
the unstable modes of the latter type have maxi-
mum amplitude around the point of maximum un-
favorable curvature, the present modes are di-
rectly connected with the stable modes that are
due to the presence of favorable magnetic curva-
ture and have their maximum around the point of
minimum B. All these modes require that the
ions be adiabatic (i.e. , conserve g and the longi-
tudinal invariant J) to lowest order. The elec-
tron mode does not have the same requirement,
but it tends to exist only for shorter wavelengths
relative to the ion Larmor radius or in configu-
rations where the typical periodicity length L, is
larger. The main geometrical feature of the ion
mode is that it is odd around the point of maxi-
mum B. Therefore, we can roughly say that the
integral X is contributed by the trapped particles
while the integral P is contributed by the circu-
lating ones. Since the electron and ion modes
both can have a large growth rate in comparison
with the frequency of oscillation, they may be
adequate to explain the observation of anomalous
transport in the absence of fluctuations as they
may give rise to convective patterns. We notice
that we can extract from Eq. (13) a stability cri-
terion for the ion mode for large T;/Te of the
form r„/L & b; Te/T;, where bi & 1, by consider-
ing the conditions in which it can be unstable,
while the electron mode from Eq. (9) requires
r /L&(rnT /TPI)"'b ' for be 1. Additional
comparisons are given in the accompanying Ta-
ble I. As pointed out previously, it is easy to
see the relationship of the electron mode with
the electron drift mode that is found in a straight
magnetic field configuration. On the other hand,
the ion mode can be related'~9 to the impurity
ion drift mode, "the trapped ions and electrons
playing the role of "impurities" in a straight con-
figuration. In fact, let us call neT, niT and TeT,
TiT the densities and temperatures of the trapped
particles and consider modes of the form y
= p exp(i~+ikgre+ik

ll
l). Then for the untrapped

particles we have, for ~/k ll &vth; &vthe, ne
= e one/Te,

Table I. Growth rates and diffusion estimates for
the electron and ion modes. [Dg =approximate Bohm
diffusion coefficient (D~ =—aevthz); a~ ~=electron (ion)

t
Larmor radius. m =electron mass, I=ion mass, and
~ =wave-length. ]

Features

Typical
growth rate

Electron Mode

1/2
th. ~'eI

ion Mode

i thi
y PV

L

"Radial"
wavelength

"Azimuthal"
wavelength

Symmetry

r n

'L~ 2 T
2ga.

8 i r MT.
I n,

Odd around points of
minimum B

)t & A. rr n

,
1/2 t T.i -1/2

8 ilr T
nI ( e}

Odd around points of maximum B

Diffusion

D y)t )t

{most pessi-
mistic esti-
mate)

L'l m e
2 T

D DB r~ M T.
1

'LI m e
2 T

-D if — ——~1
B r MT.

I I 1

r T.
n i

D - DB L T
e

2
D - yX8

(most optimis-
tic estimate)

D ~D
B 5 IM T. ,

;r ) I ij'

T. f T.
z/q z/z s v I vr L e ( ej

since they are almost free to relax to a Boltz-
mann distribution. On the other hand, the mass
conservation equation for trapped electrons and
ions gives

eon eT *eT
eT T (deT

and

after neglecting the motion along the magnetic
field and including the ExB, polarization, and
finite-Larmor-radius drifts. Then imposing the
quasineutrality condition for the equilibrium and
the perturbed state we have

as we could have obtained from Ref. 10 for /k Ill

&vtheT~vth;T. Now we recall that, as shown
previously, the effect of a varying magnetic field
is to eliminate the first-order term Iv/k llvthi
out of the expansion of the Landau integral"
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W(ru/k llvth ') and replace it by Weff —1-o~ /
Notice that this result can be obtained by

considering a velocity distribution with a "pla-
teau" at small velocities, e.g. , f~ exp(-v'/vth ).
Therefore, the equation given above becomes

(
T. ~ v . nkvd')

T (d ET (d
e bs

and reproduces Eq. (11). We also notice that in
the limit where we obtain two stable (purely os-
cillatory) modes, one is of positive energy and
one is of negative energy. Therefore, inclusion
of Landau damping effects in the theory makes
one stable and the other one unstable. A similar
situation occurs for the electrons, where, by
proper simulation of Eq. (7), two stable modes
of opposite energy sign are obtained. Referring
again to the simulation of Eq. (11), we can see
that the trapped (impurity) electrons, since
~*Te/&ueT; & 0, act like impurity ions having a
density gradient opposite to that of the "hot"
ions, Now the fact that 5;Z c 0 does not allow
complete cancellation of the contribution of R~~.
In this sense this instability can be considered
same as the one treated in Ref. 8.

A detailed evaluation of the integrals A, C, D
and X, F,Z has been carried out by considering
appropriate trial functions, making use of the
variational principles that can be extracted, in
appropriate limits, ' from the quadratic forms
given above, and has confirmed the order of
magnitude evaluations given here.

Finally, we recall that these types of modes
have interest in space physics where they may be
invoked in mechanisms to explain the dumping"

of trapped particles when their density gradient,
transverse to the magnetic field lines, is greater
than a given critical amount. We also point out a
similarity of mathematical treatment between
these modes and those, relevant to Earth's mag-
netic tail, "occurring around a neutral sheet
when wr & 1, ~ being the particle orbit periodicity.

*Work performed under the auspices of the U. S. At-
omic Energy Commission, Contract No. AT(30-1)-
1238.
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