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Paramagnetic resonance absorption between the N = 3,J= 4,M = -4 and N = 5,J= 5,M
=-4 levels of ground state 02 was observed at the HCN laser frequency of 890759+ 3
MHz in a magnetic field of 16418+1 G. This is the first observation of absorption in a
gaseous sample in which laser electron-paramagnetic-resonance techniques were used.

In an extension of previous work, ' 4 a calcula-
tion of the effect of magnetic fields on molecular
oxygen has shown that the difference between the
N=3, J=4, M= -4 and N=5, 4=5, M=-4 levels of
ground-state molecular oxygen equals the HCN
laser frequency of 890 GHz in a magnetic field of
about 16.4 kG as is shown in Fig. 1. This note
reports the first paramagnetic resonance absorp-
tion between these levels and the first laser elec-
tron paramagnetic resonance (LEPR) absorption'
in a gaseous sample. The observations were
made utilizing a specially constructed LEPR
spectrometer.

An HCN laser 7.5 cm in diameter and 2 m long
was tuned to the 337-p line. The center frequen-
cy of this line was measured to be 890759.4+0.1
MHz in agreement with Hocker et al. ' Signifi-
cant improvement in the short term (O. l-sec)
stability of the laser was obtained by using a cur-
rent-regulated power supply and 120-mA neon-
sign hot hollow cathodes operating at 600 mA.
Laser-frequency drift during the 5- or 10-min
scan was less than 3 MHz at maximum power
output.

The laser beam was focused into a Fabry-Pe-
rot interferometer consisting of a 10-cm long
cylinder 1.7 cm in diameter with one flat mirror
and a 15-cm focal length mirror. Each mirror
had a 0.75-mm hole in order to operate the Fa-

bry-Perot interferometer as a transmission cav-
ity whose Q was approximately 5&& 10'. The in-
terferometer was centered in the 2-in. gap of a
15-in. magnet with 5-in. , tapered, Rose-shimmed
pole faces. Radiation transmitted through the
cell was directed by a & -in. copper pipe to a Go-
lay cell placed outside the magnetic field 75 cm
from the center of the magnet. The output of the
Golay cell was connected to a 13.5-Hz phase de-
tector referenced to the modulation of the mag-
netic field.

Figure 2 shows the derivative of the absorption
observed at a pressure of 7.5 Torr with approxi-
mately a 10-G modulation field. The maximum
absorption in Fig. 2 corresponded to about one
part in 10 of the radiation transmitted through
the Fabry-Perot cavity; this high sensitivity was
largely due to the extreme stability of the laser
discharge. Linewidths from 3 to 25 G were ob-
served at pressures between 2 and 19 Torr,
yielding values of the linewidth parameter of
about 1.8 MHz/Torr in agreement with Zimmer-
er and Mizushima. ' An asymmetrical line shape
was observed even though linewidths were in-
creased by an order of magnitude by pressure
broadening and the modulation reduced to about
one-fourth the linewidth.

Since the ground state of the oxygen molecule
is Zg, the rotational quantum number N of the

1038



VOLUME 21, NUMBER 15 PHYSICAL REVIEW LETTERS 7 OCTOBER 1968

N J
5

59,59I

60,506

~--~---~; MJ =-4
I l,027

I6,4I8 G

(775,770) 890 759+5

IOG )

)

FIG. 2. LEPR trace of the transition between the
M=5,J=5,M=-4 and+=3, J=4,M=-41evels at a
pressure of 7.5 Torr with a modulation of about 10 G
and with a 3-sec time constant. A decreasing base
line is visible on the trace.
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FlG. 1. N =3 and N =5 levels of the ground state
( Z& ) of the oxygen molecule; dashed line indicates
the energy levels of the M =-4 states at a magnetic
field of 16 418 G between which the observed LEPR
transitions take place. The g values for these states
from the top to bottom are 0.066 74, 0.3229, -0.3951,
0.1669, 0.4952, and -0.6667. Energies are in MHz.

oxygen molecule (0'SOie) can take odd integers
only and the spin quantum number ~ = 1. The ef-
fective Hamiltonian for the rotational levels of

+'=2.0023@ S B, (2)

where pB is the Bohr magneton.
If the I NSJMJ) representation is taken with S

=1 and J=N, N+1, or N 1, then-

The coupling constants Bo B
g Bg ~o Xy pip,

and p, have been determined' ' from microwave
absorption lines in the 60-GHz region. Hill and
Gordy and Zimmerer and Mizushima observed
the Zeeman effect; the electron paramagnetic
resonance has been measured by Beringer and
Castle, ' and by Tinkham and Strandberg ~" in the
X-band and ~-band regions. An external magnet-
ic field B causes a perturbation given by

(NSJM IX' INSJM ) = 1.0012Ig MJB 1+

(NSJM IX' INS(J+1)M )= -1.0012IP &J B (J+ 1)~(2J+ 1)(2J+3)

The actual wave function of each rotational state of the oxygen molecule is not exactly I NSJMJ) but,
due to the A terms in Eq. (1), is given by

a I J-1SJM ~+b 14+1~JM ) when N=~-1

5 IJ—1SJMJ—a I J+1SJM ) when N= J+1, — (4)

I JSJMJ when N= J
Using the known coupling constants, '&' the calculated mixing coefficients ag and bg are shown in Ta-
ble I.
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Table I. ag and bg for zero field.

0.990
0.139

0.997
0.077

0.999
0.053

0.999
0.041

2.0023
N(N+ 1)

when N =J.

Numerical values of the g factors are listed be-
low Fig. 1 for the relevant levels. Transition
frequencies within each triplet shown in Fig. 1
were measured directly, ' while the frequency be-
tween N=3 and N=5 levels is derived from the
present measurement. Energy levels of interest
at 16418 G were calculated using the nondiagonal
matrix elements given by West' with the mixing
coefficients a~ and bg calculated at zero field
(Table I).

The upper state (N= 5) of the observed transi-
tion is such that, if adiabatically followed to zero
field, it reduces to the ~= 5 level. In an external
magnetic field the wave function of this state is a
mixture of J=6, 5, and 4, and at 16.4 kG is pre-
dominately ~= 4.

A zero-field energy difference of 775770+ 10
MHz between the N=3, ~=3 and N= 5, ~= 5 energy
levels was determined by subtracting the calcu-
lated 16418-G energy shifts of the N= 5, J= 5 and
N = 3, 8= 3 levels (11027 and 45 515 MHz) and the
measured energy difference between N= 3, ~= 3
and N = 3, J= 4 (58 447 MHz) from the laser fre-
quency (890759 MHz). This frequency is theoret-
ically given by

~=f(N= 5)-f(N=3),
where

f(N) =BP'(N+1)+B N2(N+1)

+B~'(N+ 1)'.

The Zeeman shift of each level is given by E
= 1.399 57gM~B (MHz, when B is in gauss) where

/a ' 5N+1 N+1 I

g = 2.0023 i

K N+1 N+2 /
when N—= ~+1,

a 2
N-1 N-1= 2.0023 — + when N —=~—1,N N-1

Using values of the parameters &,= 43 100.3
MHz, B = -0.092 MHz, and B2= (5+2) Hz, ob-
tained from microwave spectroscopy, ' &= 775 730
+ 50 MHz, where the uncertainty of +50 MHz is
due to the uncertainty in', . The more precise
value from this experiment, 775 770+ 10 MHz,
results from an accurate knowledge of the laser
frequency, the previously measured transition
between the (N = 3,J= 4) and (N = 3, J= 3) levels,
and an accurate calculation of the Zeeman shifts.
This satisfactory agreement with the above com-
puted value verifies our identification of the tran-
sition.

For the observed transition, &~=0; such tran-
sitions have not been observed in X-band EPR
absorption because of the small transition mo-
ment. Further calculations indicate other possi-
ble transitions in this region. Work is now in
progress to observe these with an improved ver-
sion of the present LEPR spectrometer.
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