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The angular conditions for the isospin-factored current algebra at infinite momentum
are decomposed into a set of momentum-transfer-independent conditions. The solu-
tions to the angular conditions are constructed and related to wave equations. The exis-
tence of spacelike solutions is established for any nontrivial solution, and the decoupl-
ing problem is discussed.

Some time ago Dashen and Gell-Mann' pro-
posed a concrete scheme for saturating the alge-
bra of current density at P~ =~. A natural first
step is to try to saturate the algebra of isospin
charge densities by a set of states all having iso-
spin ~. This simplifies the mathematics, and
may be even directly relevant for physics since
all the strangeness S =+1 mesons and/or S =+2
baryons so far observed have isospin —,'.

When restricted to a set of I= —,
' states, the cur-

rent may be written as F;(k), i =1, 2, 3, where 7
is the usual isospin matrix and k is the two-di-
mensional transverse momentum transfer. In
Ref. 1 it is found that the j(k) must satisfy the
conditions

j(k) =exp(ik X),

where X=(X„X,) are any two commuting self-ad-
joint operators, and

P P P j(k})0=(f (J j(k})},
where

(f,e] = 2[M, [Js,e]]-[k MJ,e]-2k [Jp,e]
(J,e) = —,'[M', [M',e]]+—,'k'[M', e]+—,'k'e,

M is the mass operator, J, the helicity operator,
and J=(J„J'2), where J~, a =1, 2, 3, generate the
rotation group in helicity space:

[J,M] = 0, [J,J ] =is J .o' ' o. ' P nPy y'

Equation (1) is enforced by the charge-density al-
gebra and Eq. (2) by the condition that the satura-
tion be Lorentz invariant. Equation (2) is simply
another form of Eq. (11) of Ref. l. Any solution
of Eqs. (1)-(3) is a solution of the saturated alge-
bra at P~ = ~, with the mass spectrum given by
M and the form factors by exp(ik X). A number
of particular solutions to these equations are al-
ready known. ' 4

The purpose of the present note is to present
the following results of a more general investiga-
tion of Eqs. (1)-(3):

(1) Elimination of the momentum transfer.
—Multiplying Eq. (2) to the left by exp(-ik X) and
expanding in powers of k, we find that if the ex-
pansion terminates, ' and if we reject solutions
for which a spacelike part (M~& 0) exists and is
definitely coupled to the timelike part by the cur-
rent, then Eqs. (1)-(2) are equivalent to the set
of k-independent equations for M, J„X, and J
given in Table I.

(2} Primitive solutions. —By choosing

8 =0, 8 =2(R+ 1), 8= —2(R+1),

respectively, the equations of Table I can be re-
duced to three primitive (mutually exclusive)
sets of equations. The primitive equations can
be solved completely' and the solutions are as
follows: For B=O, the six operators X, J„F
=A+2[X,M'], and RB=Kp iR f-o—rm an exact
SL(2, C) algebra, and satisfy the pseudo-Hermi-
tian condition O~=(1-e) O(1-&). The mass op-
erator is given by M'= (1-e) '(gp-g, + s), where
s is any scalar, g& is any vector, and & =go+g, .
M' and e are Hermitian. For 8 =+p(R+ 1), the
six operators X, J, =J,+ p, F = A+ &[M', [J„X]],
and K, form an exact SL(2, C) algebra and are
Hermitian. The mass operator is given by I'

(gp gp) +gy(1 e) 'g~, where g& is any Hermi-
tian vector, g+ =g, + ig„and E =go+g3.

(3) Wave equations. -There is the following
connection between the equations of Table I and
infinite- component wave equations: The three
primitive solutions may be derived from the
wave equations

(p'-2g. p s}V=o (r p r-.g}N=o, -

respectively, where g is any P-independent vec-
tor and s is any p-independent scalar.

Nonprimitive solutions connecting the spaces
8 =+-,'(R+ 1}can be derived from the wave equa-
tion

(rP-%)y = 0,
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Table I. Momentum-transfer —independent equations for M, J3, X, and J. The

independence of the equations can be checked by considering the special case M
=const.

Definitions Equa, tion s

X =Xenix, J = J+jJ
+ 1 2' + 1

[X, , [X., [X, M ]]] = 0

M=[X, M ] [ x ,~ ] = [ x , w ] = 0

= [X,[X, M ]]

-1
c = (R+1) 4

& =+2iMJ +-"[M, X ]
2

2

iK + {J -B} = & [~ x j

[B,X. ] = 0, i[K3 X ] X.

2 1 2
[B, R] = 0, B[B -4(R+1) ] = 0

M = 0
++

M [B+ (R+1)] = [B - 2(R+1)] M = 0
++ ++

G = B — 4'(R+ 1) M G =M G =0
++ +

G =+-[K ~ + M ]~+~A +1M ) M G y, + M G]+ 4[B (R+1)] G 0
4 3 + ' + ' + ' + + + ' +* +

M G- [A + —,'M, G] - 4[B+ -,'(R+ 1)] G = 0

1 2 1 2
2M G -[A+ —'M, G ]+—[K, M M ]+4M M = 0

+ + + ' +' + 8 3' ++

2M G -[A +2M, G ]-—[K, M M ]+4M M =01 2 1 2

8 3'

where % is any P-independent scalar' such that
[y„im]c 0. Nonprimitive solutions connecting
all three spaces B = 0, B =+2(R+ 1) can be derived
from the coupled wave equations

(y P-Xf)q=}{.q&, (P' 2g P s)y =}{-y, —

where }{ is any i}-independent spinor, and X =(1
-e)} ty, .

!
The fact that Eqs. (5) represent the most gener-

al solution to the primitive equations, and that

they are only mildly P dependent, suggests that

(7) may already represent the most general solu-
tion to the equations of Table I.

(4) Spacelike solutions. -Under very mild tech-
nical conditions, the equations of Table I can be
shown to be either physically trivial or admit
spacelike as well as timelike solutions. ' Proof:
From the first set of equations in Table I, we

have

(exp(iAX )d, M' exp(i}&X )d) = (d, M'd) +i}&.(d, [X„,M']d) ——,'}{'(d,[X,[X,M']]d), (8)

whence

M' &0 —[X, [X„,M']] (0-R & 0-0(« l. (9)

On the other hand, by suitably combining the
equations of Table 1 with Eqs. (3) we obtain the
relation

we have from (10) and the last inequality in (9)

C'(x) & 4/) and 0~4(z)(1, -~(g(~, (12)

respectively. But these inequalities are incom-
patible unless C (z) = 0. Hence

i[K~& e]=a+~(1—e)[M++&M ]~(l-e).
Hence, if we define the functions

(10) M'& 0- eQ) =0- e =0-R =0

-[x, [X,M]]=0. (13)

C(x) =(e d, ee d), ]}d)) =1, The last implication follows from the second in-
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equality in (9). But then the coefficient of i' in

(9) vanishes. Hence, according as the coeffi-
cient of X vanishes or not, I' commutes with the
current operator, or is not positive.

The existence of the spacelike solutions obvi-
ously represents a serious difficulty for the pro-
gram of saturating with timelike one-particle
states. However, there still remains the ques-
tion of coupling.

(5) Coupling of spacelike solutions. —It would
be possible to saturate current algebra consis-
tently with timelike solutions alone if the current
did not couple them to the spacelike solutions.
This happens for the free-quark solution, but
not ~' for the two previously known nontrivial so-
lutions, a result which suggests that it happens
only in the trivial case. We do not have a gener-
al proof of this, but that the free-quark model is
exceptional can be seen intuitively as follows.
For any of the primitive solutions, B = 2(8+ 1)
say, let A be the projection on the timelike
states, and let the current exp(ik X) commute"
with A. Since M' commutes with A, this sug-
gests that [X, Ml] and [X, [X, M~]] commute with

A, and since

M' =go-g, +g (I—e)- Ig+, [X,M'] = 2ig(1-e)

[X., [X., M~]] = -25. .e(l-e)2' 2' U

this in turn suggests that g=(e, g, go-g, ) com-
mutes with A." Let us assume this. Now from
(9) and (10), A projects on 0 ( e ( 1 and K, dilates
e (M++ =0 for primitive solutions). Hence A(t)
=exp(itK, )Aexp(-itK, ) is the spectral family" for

But exp(itK, ) maps g into itself. Hence g com-
mutes with A(t), and consequently with e From.
this it is easy to show that g is Abelian, and this
is just the content of the free-quark model. "

If in general the spacelike solutions do indeed
couple, the program of saturating with states of
a single isospin fails-the restriction to the I= ~

states is apparently too strong. Note that we
have made no explicit use" of the discreteness
of M', and hence can allow any amount of contin-
uum so long as it has I= &. Thus, a partly con-
tinuous mass spectrum alone will not provide a
cure. A continuum with increasing isospin
(which is of course provided by the physical
many particle states) seems to be necessary.

The authors are indebted to Professor M. Gell-
Mann, Professor D. Horn, Professor J. Weyers,
and Professor F. Coester for many stimulating
discussions.
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2Trivial solutions are M = const, in which cas e the
equations of Table I can be solved exactly, and the two-
free-quark model, for which the spectrum of M is
continuous.

A nontrivial solution, which turns out to correspond
to the special case of our primitive solution B= 0 in
which the operators X form a complete commuting set,
was found by H. Leutwyler, Phys. Rev. Letters 20,
561 {1968).

4A nontrivial solution using a wave equation of the
form (7), with a Dirac Majorana representation of
SL(2, C) was found by M. Gell-Mann, D. Horn, and

J. meyers, in Proceedings of the International Confer-
ence on Elementary Particles, Heidelberg, Germany,
1967, edited by H. Filthuth (North-Holland Publishing
Company, Amsterdam, The Netherlands, 1968). This
form of equation was first considered by E. Abers,
I. Grodsky, and R. Norton, Phys. Rev. 159, 1222
(1967).

5In the case that one demands saturation of the alge-
bra [V0(x), V@(x')] for p, =1,2, 3, as well as p, =0, the
expansion definitely terminates, and there is some evi-
dence to show that it terminates in the general case al-
so. Hence the termination assumption is probably not
too restrictive.

In the case that one demands saturation of [V0(x),
V& )] with p = 0, 1, 2, 3, the only class of solutions is
the primitive class B = 0. In the limiting case of large
g& and s, we have the simplified solution B =R+ 1=0,
which can be derived from a linear wave equation (2gp
+s)y =0. A unified way of writing both solutions is

(gp2+ 2gp+s)y = 0, a = scalar.

A similar modification should also be made on the non-
primitive solutions.

The operator M~ of Table I can be understood intui-
tively in terms of the wave Eqs. (6) and (7). It is non-
zero if, and only if, ~contains a term y@y~Z», where

Z» is a P-independent, y-independent, SL(2, Q) anti-
symmetric tensor.

A sufficient technical condition is that there is a
common, dense, invariant domain D for the operators
of Table I, on which M and e are essentially self-ad-
joint, M++ and M are essentially adjoint, and J3, X,
and K3 generate a unitary group which leaves D invari-
ant. The strongest assumption is that K3 generates a
unitary group. However, since for the wave equations
(5)-(7) this is necessary in order to have finite Lorentz
transformations in the spinor space, it is clearly a
reasonable assumption. (Note that K3 does not generate
a unitary representation on the subspace of timelike so-
lutions alone. )
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The above result concerning spacelike solutions is
similar to a result obtained earlier by I. Grodsky and

R. Streater, Phys. Rev. Letters 20, 695 (1968), but it
is not completely equivalent. In our case, we assume
current algebra and isospin factorization, but make no

a priori assumptions concerning the representations of
SL(2, C) to which the particles belong or concerning the

p independence of the current. [In fact, for the primi-
tive solution p =0 and the general wave Eqs. (7) the
current turns out to be linear in p.] Grodsky and
Streater, on the other hand, do not assume current al-
gebra, but assume that the current is p independent,
and restrict the representations of SL(2, C) by demand-
ing a polynomial bound on the positive frequency pro-
jection operator. Finally, our result shows that the
spacelike part does not completely decouple at pz -~.
It is coupled by the operator exp(ixK3), if not by the
current.

S. J.Chang and L. O'Raifeartaigh, Phys. Rev. 170,
1316 (1968), and Phys. Rev. (to be published).

Note that the decoupling is characterized by the fact
that whereas the full Lorentz goup in spinor space does
not leave the timelike subspace invariant, the g (2) sub-

group generated by J3 and X does.
~2The argument up to this point is not rigorous be-

cause M contains the singular term (1-e) . Hence it
does not follow immediately that [X,M ],[X, [X,M ]],
and g& commute with A if M and X do. Indeed, for the
free-quark model itself, the anticommutator [M, X]
does not commute with A. However, one expects the
commutators to be better behaved than the anticommu-
tators, especially as they can be derived from the (fi-
nite) expansion of exp(ik X)M exp( —ik X) which, by hy-
pothesis, commutes with A for all k.

We assume for simplicity that e ~ 0. One can check
that there is no inconsistency, and practically no loss
in generality, in making this assumption.

~4In the general, nonprimitive case one has the some-
what looser argument: M, J~,J3 commute with A and

K3 does not. Hence if X commutes with A, the six bas-
ic variables of Table I, Sec. 2, commute with A, but

K3 which is a bilinear in these variables, does not.
This appears to be a rather exceptional situation.

~ Provided the formal transition from discrete to con-
tinuous masses is sufficiently smooth.
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