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model data " to see if they seem valid there also.
To this end we have computed the following (Ta-
ble I):

2 OO OO 2mn
G(~ T)= Q P g (~) K, (13)

m=0 n=m+1
where K=X/kT (with J' the exchange integral)
for square, triangular, simple cubic, bcc, and
fcc lattices, to order 7 and K or K'0 for close-
or loose-packed lattices, respectively, and (w')

and K' otherwise. Where comparison is possi-
ble, our results agree with those (as corrected)
of Opechowski. ' Except for the coefficient of 7

for the two-dimensional lattices, all the coeffi-
cients had the expected signs. All the coeffi-
cients of the determinants D(0, 1) and D(1, 1)
were positive. Since the coefficient of 7 is re-
duced magnetic susceptibility minus unity and
has been extensively studied, ' there is little
doubt that it is positive over the range T )Tc (if
any). Consequently, the inequalities which we
have proved rigorously for the ferromagnetic Is-
ing model appear to be valid for the ferromagnet-
ic Heisenberg model as well.

Hence we propose that it may be worthwhile to
test them experimentally. This test can be
made by noting that form (7) implies that

(—1) & G(7 ))0, (14)

where 4 is the difference operator with respect
to 7 . That a, difference is involved instead of a
derivative allows the direct use of experimental
data without the difficulty of trying to extract a
derivative.
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Experimentally well established features of semiconductor surface-state distributions
are explained in terms of a realistic model calculation.

Calculations reported here for a model crystal
surface provide a consistent explanation of the
surface-state distributions observed in silicon
and germanium, and a simple extension sug-
gests reasons for trends observed in the distri-
butions for III-V and II-VI compounds. These
are believed to be the first detailed calculations
based on a realistic potential.

A recent survey' of measurements on semicon-
ductor-vacuum interfaces indicated two distinct
types of behavior. In covalent semiconductors,
such as silicon, the densities of surface states
and surface atoms are comparable and the Fer-
mi level lies in the lower part of the band gap.

Markedly different are more ionic crystals,
which exhibit much lower densities of states. A
similar situation appears to exist at semiconduc-
tor-metal contacts, ' though in this case the sur-
face states must be interpreted as tails on the
metal wave functions. ~~4

Calculations of localized states for the (110)
face of silicon are reported here. The model is
similar to that also suggested by Chaves, Majlis,
and Cardona' and is described elsewhere. ' The
bulk crystal potential is unaltered up to the sur-
face plane, where it changes abruptly to the vac-
uum level, determined by work-function mea-
surements. For this model, the calculation sep-
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arates into two parts, the first of which is the
determination of eigenfunctions of the crystal
Hamiltonian with real energies and complex com-
ponents of momentum k~, normal to the surface.
Such complex band structures have been deter-
mined at several symmetry points of the two-di-
mensional Brillouin zone using the pseudopoten-
tial method. ~ This scheme is known to give a
good description of the bulk band structure of
many semiconductors' and has been adopted in
preference to the tight-binding method, which
has additional analytical disadvantages. o The
wave functions for the states in the neighborhood
of the semiconductor band gap are dominated by
states with wave vectors on the surface of the
Jones zone, ' and basis plane waves have been
chosen by symmetry from such wave vectors.
For a given k I, the (unchanged) component of
the wave vector in the plane of the surface, lo-
calized states may now be found by matching
these eigenfunctions and their normal deriva-
tives to appropriate vacuum wave functions, i.e.,
plane-wave states with one component of momen-
tum purely imaginary. The Fourier expansion
in g~~ is truncated to the leading terms and spin-
orbit coupling is neglected, though its inclusion
would require no conceptual change.

The two-dimensional Brillouin zone of the (110)
face is shown in Fig. 1(a)" and the principal re-
sults, the surface-state bands in the neighbor-
hood of the gap, are shown in Fig. 1(b). Inter-
polation between symmetry points utilizes a sim-
plification of the pseudopotential band structure
based on the Jones zone. Two basic results
emerge:

(1) Two bands of surface states overlap and
are degenerate along the line Z. This degenera-
cy is a consequence of the glide plane whose
translation is in the plane of the surface. The
surface states are of the nature described by
Shockley" and correspond to one state per brok-
en bond. Their appearance as two bands is due
to the small size of the surface Brillouin zone
relative to the Jones zone.

(2) With one state per surface atom and two at-
oms per unit cell, one of the above bands should
be occupied. For an electrically neutral surface,
the Fermi level will lie in the lower half of the

gap, in agreement with experiment. The sur-
face levels in this region are sensitive primari-
ly to the splittings F„'-X~, X4 X~, and I.,'

These are essentially the same in silicon
and germanium and, as a consequence, similar
results may be expected. It should be noted that

some of the surface states are degenerate with
volume states with the same k~~. Resonant
states will result.

The model calculation should provide a good
first approximation to the surface-state distribu-
tion. As predicted by Heine, ' the surface-state
energies were found to be less sensitive to the
precise form of the surface potential than to the
phase of the crystal wave functions. In addition,
the calculated imaginary components of kz indi-
cate that the states are considerably less local-
ized than the region of expected surface disor-
der.

The III-V and 0-VI compounds may be described
by introducing an antisymmetric component into
the potential. ~~' The degeneracy at Z will split;
a gap in the surface-state distribution will re-
sult and will increase with increasing antisym-
metry in the potential. This result may be an
important factor in an explantion of recent re-
sults' on CdS Se~ -metal junctions, which
seemed to indicate that a continuous transition
between the classes mentioned above could oc-
cur. With increasing antisymmetry, the occu-
pied and unoccupied bands of surface states
would be well separated, with the Fermi level in
the region between.

The splitting due to the antisymmetric poten-
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FIG. 1. (a) Two-dimensional Brillouin zone of dia-

mond-structure (110) face. (b) Surface-state energies
along different lines of symmetry in zone. The bulk
energy gap (1.1 eV) is denoted by EG.
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tial may also explain the absence of intrinsic lo-
calized states on ideal oxide-coated silicon sur-
faces. ' In tunneling experiments, oxide and vac-
uum behave quite similarly and it is perhaps par-
adoxical that they should have such different in-
terface state distributions. In a one-dimensional
model, a band gap may be denoted as "S"or "n-
S" according to whether or not it gives Shockley
states. Matching arguments indicate that no lo-
calized states will exist at the boundary between
two S-type materials. The absence of intrinsic
states on oxides and ionic crystals has formerly
been interpreted as resulting from an n-S gap,
in which case surface states should exist at an
oxide-semiconductor interface. However, the
present results and the recent extension of the
pseudopotential scheme to MgO" suggest that
the gap in the oxide may be basically S-type, giv-
ing no surface states for oxide-coated silicon or
germanium, but with the bands on the oxide-vac-
uum interface so separated that they are near
the edges of the bulk band gap and produce no de-
tectable consequences.

The results described here will not necessari-
ly be identical to those obtained for other crys-
tallographic faces. The (110) face is of particu-
lar importance, however, since the semiconduct-
ing compounds generally cleave at this face.
Calculations on other faces are in progress.

I am indebted to Dr. V. Heine for many stimu-
lating discussions and to Dr. N. %. Ashcroft,

Dr. T. K. Bergstresser, and Dr. L. M. Falicov
for helpful conversations.
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The quasiparticle recombination time v~, has been measured in superconducting alum-
inum films. The temperature dependence of ~z at low temperatures was found to be in
good agreement with theoretical expectations.

We have measured the recombination time of
quasiparticles in superconducting aluminum by
a method simila, r to that of Miller and Dayem
(MD). ' In contrast to their results, but in agree-
ment with theoretical expectations, '&' the recom-
bination time ~z was found to be nearly propor-
tional to exp(h/kT) at low temperatures. Here,
& is the (temperature-dependent) energy gap and
T the temperature. MD found a much weaker
temperature dependence of the form exp(=0. 3&/
k T).

As the general experimental technique was ade-

quately described by MD, we give only a brief
description here. The measurements were
made with a double tunnel junction, shown in
Fig. 1(a). Care was taken to prevent direct con-
tact between the indium film and the bottom (400
0

A) aluminum film. Excitations (essentially un-
paired electrons) are made at a steady rate in
both aluminum films by biasing the aluminum-ox-
ide-aluminum tunnel junction (generator) at a bi-
as voltage V&2gAI/e, where EAI is the energy
gap in the aluminum. This increases the quasi-
particle density above the thermal equilibrium
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