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SOME RIGOROUS INEQUALITIES SATISFIED BY THE
FERROMAGNETIC ISING MODEL IN A MAGNETIC FIELD*

George A. Baker, Jr.
Applied Mathematics Department, Brookhaven National Laboratory, Upton, New York

(Received 8 February 1968)

We show in this Letter that for the ferromag-
netic Ising model, a function closely related to
the magnetization, when considered as a func-
tion of the hyperbolic tangent of the magnetic
field, has a very special structure. This struc-
ture enables us to prove two sorts of related in-
equalities. One type, Eq. (11), of interest to
theorists, shows that the critical-index gap
parameters, ~, , form a nondecreasing sequence.
The other type, of interest to experimentalists,
is that every difference (not derivative) of the
function we introduce has a fixed sign as a func-
tion of magnetic field. We have also checked
these relations on all the available data for
the spin- —,

' Heisenberg model and find agree-
ment.

Our starting point is a recent rearrangement'
of the results of Yang and Lee for the free ener-
gy I" of the ferromagnetic Ising model:

per spin as

= 7+
mN

2~(l —H)t 1

)1+ T M 1+(d (6)

or the function

(7)

G(7 ) =Go(T)-G~(T)r +G2(T)v ~—
then

(I/mN) ~~—d(((u)
r(1 —v ) 1 + r (u

'

where d(~0. We remark that for T &Tc, the
critical temperature, the upper limit of integra-
tion is less than infinity, but for T~Tc it is in-
finite. We note that G(0) = ~ for T ~ Tc.

The consequence of form (7) is that G(7 ) is a
series of Stieltjes. s This fact means that if we
expand

F/kr = —mH/kr —f ln[(1 —p)'+4py]dy(y), (1)
D(m, n) = G

m
G ~ ~ 0 Gm+1 m+n (9)

where dy(y) &0, m is the magnetic moment per
spin, H the magnetic field, k Boltzman's con-
stant, T the absolute temperature, and

G Gm+1 m+2

Gm+5
~ Gm+2n

p, = exp( —2mH/kT).

We shall rewrite this expression in terms of

r =tanh(mH/k T)

F/kr = —' in[-'(1-v')]

(2)
It is easy to show that the divergence of the Gi

at T = T is the same as the corresponding (one
power of 7 or H higher) coefficients in the mag-
netization. Following the notation of Baker, Gil-
bert, Eve, and Rushbrooke (y&-y& 1 =26 in the
notation of Fisher' ),

G (~, r) (r-r ) m, T-T . (10)m c c
f »[~—'(l-y)+y]d9 (y), (4)

where' use is made of

f dy(y) = 2.

Now, if we substitute co =y ' —1, we obtain

kT
= 21n[4(1—v')]

It follows at once from (9) for n= 1 that the criti-
cal exponents obey

y. -2y +y. &0i+1 i i-1
or that the yi increase at least linearly with i.
These relations are obeyed in every known case
within calculational error. See Fisher' for a re-
view. The linear relation

+1 1
inydy (y) — ln(1+ w'~)dy . (5)1+co"0 0

y. =y +26i (12)

Hence, differentiating with respect to the mag-
netic field, we obtain the reduced magnetization

required by the scaling laws' is allowed by (11).
We have also tested all available Heisenberg
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Table I. The Heisenberg-model g~„coefficients.

1
2
3
4
5
6
7
8
9

10

3 ..0
6 .0
11.0
2 0 .62 5
39.02 5
68 .777083333
119~ 42976190
216.1622 7679
387.193832 67
658 .34153977

Simple Cubic
0

16.5
93.5
364.5
1201.75
3575.7125
9860.1833333
25661.864211

Lattice
0
0

109.5
1085.625
6631.5
31861.49375
131563.225
487668. 51942

0
0
0

797.625
11514.75
96787.8125
615203.4375
3265575.2925

Body-Centered Cubic Lattice
1
2
3
4
5
6
7
8
9

10

4.0
12.0
34.666666667
95.833333333
262.7
708.04166667
1893.2896825
5012 ' 1086310
13235.513272
34737.965232

0
30.0
250.0
1460.6666667
7193.0
31871.133333
131144.06111
510344.67827

0
0

274.0
3970.5
35853.0
255427. 325
1565813.8833
8627298.6205

0
0
0

2759.5
58041.0
716544.91667
6716153.4833
52696392.526

Face-Centered Cubic Lattice

1
2
3
4
5
6
7
8
9

6.0
30.0
138.0
611' 25
2658 ' 55
11432.5125
48726.726190
206142 ' 36741
866895.50635

0
69.0
931.0
8736.0
68948.5
488853.18333
3215606.1083
19994641' 556

0
0

969.0
22529.25
325798.5
3714828.2375
36427972.0
320929521.10

0
0
0

15015.75
504508. 5
9949385.625
148992174.07
1867849644.0

Square Lattice

1
2
3
4
5
6
7
8
9

10

2.0
2 ' 0
1.3333333333
1.0833333333
1.1833333333
0.50972222222

-0.32182539683
0.40739087302
1.0672839506

-0.69281883818

7.0
21.0
38.666666667
57.5
77.544444444
93.741666667
97.905307540

0
0

29.0
153.75
468. 5
1074.9125
2070.7833333
3509.2290179

0
0
0

130.25
1007.5
4318.0416667
13500.325
34373.307794

Triangular Lattice

3.0
6.0
8.5
9.375
11.025
16.964583333
21.152678571

8 8.8058779762
9 -9.6784556878

0
16.5
90.5
312.0
839.25
1934.5
4022. 1625
7701.2694196

0
0

108.0
1020.375
5638.5
23391.21875
80285.9625
239966.59621

0
0
0

767.625
10455.75
80023.9375
448375.7625
2039001.7915
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model data " to see if they seem valid there also.
To this end we have computed the following (Ta-
ble I):

2 OO OO 2mn
G(~ T)= Q P g (~) K, (13)

m=0 n=m+1
where K=X/kT (with J' the exchange integral)
for square, triangular, simple cubic, bcc, and
fcc lattices, to order 7 and K or K'0 for close-
or loose-packed lattices, respectively, and (w')

and K' otherwise. Where comparison is possi-
ble, our results agree with those (as corrected)
of Opechowski. ' Except for the coefficient of 7

for the two-dimensional lattices, all the coeffi-
cients had the expected signs. All the coeffi-
cients of the determinants D(0, 1) and D(1, 1)
were positive. Since the coefficient of 7 is re-
duced magnetic susceptibility minus unity and
has been extensively studied, ' there is little
doubt that it is positive over the range T )Tc (if
any). Consequently, the inequalities which we
have proved rigorously for the ferromagnetic Is-
ing model appear to be valid for the ferromagnet-
ic Heisenberg model as well.

Hence we propose that it may be worthwhile to
test them experimentally. This test can be
made by noting that form (7) implies that

(—1) & G(7 ))0, (14)

where 4 is the difference operator with respect
to 7 . That a, difference is involved instead of a
derivative allows the direct use of experimental
data without the difficulty of trying to extract a
derivative.

*Work performed under the auspices of the U. S.
Atomic Energy Commission.
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INTRINSIC SURFACE STATES IN SEMICONDUCTORS*
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Experimentally well established features of semiconductor surface-state distributions
are explained in terms of a realistic model calculation.

Calculations reported here for a model crystal
surface provide a consistent explanation of the
surface-state distributions observed in silicon
and germanium, and a simple extension sug-
gests reasons for trends observed in the distri-
butions for III-V and II-VI compounds. These
are believed to be the first detailed calculations
based on a realistic potential.

A recent survey' of measurements on semicon-
ductor-vacuum interfaces indicated two distinct
types of behavior. In covalent semiconductors,
such as silicon, the densities of surface states
and surface atoms are comparable and the Fer-
mi level lies in the lower part of the band gap.

Markedly different are more ionic crystals,
which exhibit much lower densities of states. A
similar situation appears to exist at semiconduc-
tor-metal contacts, ' though in this case the sur-
face states must be interpreted as tails on the
metal wave functions. ~~4

Calculations of localized states for the (110)
face of silicon are reported here. The model is
similar to that also suggested by Chaves, Majlis,
and Cardona' and is described elsewhere. ' The
bulk crystal potential is unaltered up to the sur-
face plane, where it changes abruptly to the vac-
uum level, determined by work-function mea-
surements. For this model, the calculation sep-
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