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The problem of N particles interacting in one dimension by a repulsive delta-function
potential is solved, when the wave function P transforms like any irreducible represen-
tation By of S~ for which the Young tableau consists of a finite number of either rows
or columns.

In a recent paper, Yang~ gave a general for-
mulation by which the one-dimensional repul-
sive delta-function interaction problem

H = — —,-+2c 6 x.-x. c &0 1

1 2 2(j
is reduced explicitly to a matrix problem. In
particular, if we require the wave function
g to transform like the irreducible represen-
tation R~ of the permutation group SN, then

g is given by Bethe's hypothesis:

(2)

if the p's satisfy a particular matrix equation

exP(iP.L, ) = lL. ,j'
p, .y =X. .' ~ ~ X .'X .' ~ ~ X. . 'y (4)+)j)/71

(j=1, , N).

Bethe-Yang hypothesis for each ordering of
the N—m, particles. This parallels the orig-
inal 5-interaction problem. In this way, one
might obtain a new matrix equation of small-
er dimension. It is the purpose of this note
to demonstrate that this scheme is, in fact,
possible. We shall carry through the program
for z =3, R~= [N M, M M—l, M1—]; the general-
ization to arbitrary & will be evident in the end.

The Pi& of Eq. (4) are permutation operators
of R( of SN. We may represent them by M
distinguishable particles on a cyclic chain of
N sites. In addition, rearrangements of the
M particles constitute a representation of SM.

If 1&yql & ~ ~ ~ &yqM &N a,re the coordinates
of the M particles, and A1, ~ ~ ~, AM a set of un-
equal real numbers, then we seek a solution
to Eq. (4) of the form

[Q,P]F(A, y )~ ~ F(A, y ), (I)

Here,

X..' =
22

1+x..P. .
U U

1+x..
u

2C
X.. =

22 p —p
2

(6)

P&' are permutations in the representation R~
= ml, m2 ~ ~, m~].

Yang was able to solve this matrix equation
for R ~= [N M, M] by —taking as a representa-
tion of Pz& permutations of M identical parti-
cles and N—M identical vacancies, on a cyclic
chain. He then showed the wave function of
the particles, in this new problem, to be giv-
en by a generalized Bethe's hypothesis, which
we shall call the Bethe-Yang hypothesis.

The success of this idea suggests that, for
the general representation R~, we represent
P&& by permutations of m, identical vacancies
and N—m, distinguishable particles. One would
then expect the wave function to satisfy the

y —1 ip iA c'.— —
F (A, y) =II, (c' = c/2).

2+
sP. 3A+c'

P, Q are two permutations of the integers 1,
~ ~ ~, M. We arrange [Q, P] as an M!xM ~ ma-
trix, and denote the columns by tP

One finds Eq. (4) to be satisfied, except for
periodicity, if

y i34g
nP. - ~ Pn oPn. ~ .

where

(8)

nP 34
nP I-x (10)
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It is to be understood that the Pn p of Eq. (10)
are now the permutation operators of an as
yet unspecified representation B& of SM. Since
these F' operators satisfy the same identities
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as (Y7), (Y8), Eqs. (9) are consistent. Imposing periodic boundary conditions, we obtain the equa-
tions

where

N (iA —ip. +c')
v '=II!.
n . & iA ip. -—c')'j=1& e j

v 'f =X "~ ~ .X "X "~ X "f (n=l ~ ~ ~ M)0 @+1 n M, o. 1 o. n-1 n 0

(12)

(13)

1+x I' 1+x
x -=I y ~ P= P P= Px

nP nP nP 1 x 1 x nP
nP nP

Here Xnp' is Xzj' with xnP replacing xzj. We may thus rewrite Eqs. (12) and (13) as

M (iA iA +—c) N (iA iP. +c')—
n!, P

I n.n n (XA tA ——c 3 . 2A ip. ——c )P=lx n P / j=1 n j

(14)

v g =X ' ~ ~ X 'X ' ~ X 'K (n=1'''M)
n 0 ++1 n Me 1 e o.-1 e 0

We choose the representation R& and SM to be [m2, m3, ~ ~ ~, mz]. Thus Eq. (4) is satisfied, and
we find the eigenvalue to be

M (ip. -iA -c')
g. = n . '. ', !.j (iP. iA +c')'—

(13')

(14')

Although the problem at this point has only been reduced to another matrix equation (13'), we no-
tice that this new equation is identica. l in form to the original equation (4). Thus we may use the same
trick to again reduce B&. For v a finite number of rows, this process will terminate after produc-
ing a coupled algebraic equations.

For our case where K = 3, we carry the procedure through once more, and obtain the equations

M (ip. -iA -c )
exp(i PL) = g, I (j=l, ~ ~, N);ip. iA +c'—

N (iA ip. +c') M (iA— iA +c)—M, (iA —ik —c' )

(iA ip. c') (i—A— iA —cj jA —ik +c'j—
M (ik iA +c-'~ M, (ik ik +c)-

We take the logarithm of Eqs. (I&), (16), and
(17):

I, =2mi +Q 8(2P —2A),
p p A

,8(A —A') =2m J +Q 8(2A —2p)
p

of N, M, M, ascending real numbers; Ip, &A, &k
are either integers or half integers, coming
from the logarithm. For the ground state, when
M is even and N, M, are odd, we find

+Q 8(2A —2k), (16')
I = successive integers from
p

—2(N—1) to +2(N—1), (18a)+,8(k —k') =2mK +Q 8(2k-2A), (17')

where 8(x) =-2 tan '(x/c), and p, A, k are sets
2 +~A

——successive integers from
I-M/2 to +M/2,
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K = successive integers from
k

—2(M, —1) to +2(M, —1). (18c)

4codA2' =1+
&-B c'+4(p-A)' '

We may now approach the limit N, M, M„L- ~ proportionally, obtaining integral equations.
After differentiating, these equations for the
appropriate densities are

In addition,

—=f@ pdP, —=f odA,
N M

—Q
' I. B—

M,

the ground state energy is

~= f P pdP.

(22)

4cpdp "A 4c vdk

q c'+4(A —p)' „g c'+4(A —k)'

B 2cadA'
= 21TG+ 2

(A A )2,

4c o'dA
~A 2c 7'dk '

J B c'+4(k-A)2 J & c2+(k-k')' (21)

For arbitrary finite &, define a set of & vari-
ables, densities, and limits, denoted by ki,
pi(ki) Bi Z, et

M. = m. .
j=g

Then the general equations are

t

B2 4cp,dk,
+J c2 4(k k )2'—

2

r Bi + 1 4cp. dk. "Bi-1 4cp. dk. &Bis+]. g+g 2 2 —1 s —1
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2cp.dk.
2

c'+(k.-k )' ('=
2

(24)

(25)

fBq ] 4cp dk ~B~ 2cp dk
v —1 v —1

J B 1
c'+4(k —k )' v ~ B c'+(k —k ')"

v —1 K K K

(26)

B.
= f p.dk. (i=1, ~ ~ ~, v); —= J p k 'dk .

B1
I —Bi i i ' ' '1. -B111 1'

We may also solve for a representation R~' =R~ by making use of the identity (Y13). The mi are
now the lengths of the lc columns. All equations remain the same, except Eq. (24), which becomes

4cp,dk, B& 2cp,dk, '

B2c+ 1

(24')

These sets of integral equations are generalized Fredholm equations with a symmetric nonsingu-
lar kernel. If some Bi =~, ie1, we integrate the ith equation over all ki, giving mi+1=mi. Thus
all B; = ~, iW 1, corresponds to a rectangular tableau.

It is a pleasure to thank C. N. Yang for many helpful discussions.

C. N. Yang, Phys. Rev. Letters 19, 1312 (1967). References to particular equations of this paper will be desig-
nated by Y plus the number of the equation; thus, Y1 is Eq. (1) of the paper. This paper gives earlier references
to work on the problem.
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