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The problem of N particles interacting in one dimension by a repulsive delta-function
potential is solved, when the wave function ¢ transforms like any irreducible represen-
tation Ry of Sn for which the Young tableau consists of a finite number of either rows

or columns.

In a recent paper, Yang' gave a general for-
mulation by which the one-dimensional repul-
sive delta-function interaction problem
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is reduced explicitly to a matrix problem. In
particular, if we require the wave function

Y to transform like the irreducible represen-
tation Rz/) of the permutation group Sy, then

¥ is given by Bethe’s hypothesis:
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Pj; are permutations in the representation Rap
= ml’m2""mx]'

Yang was able to solve this matrix equation
for R 9= [N-M,M] by taking as a representa-
tion of Pij permutations of M identical parti-
cles and N-M identical vacancies, on a cyclic
chain. He then showed the wave function of
the particles, in this new problem, to be giv-
en by a generalized Bethe’s hypothesis, which
we shall call the Bethe-Yang hypothesis.

The success of this idea suggests that, for
the general representation R , We represent
Pij by permutations of », identical vacancies
and N-wm, distinguishable particles. One would
then expect the wave function to satisfy the
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Bethe-Yang hypothesis for each ordering of
the N-m, particles. This parallels the orig-
inal 0-interaction problem. In this way, one
might obtain a new matrix equation of small-
er dimension. It is the purpose of this note
to demonstrate that this scheme is, in fact,
possible. We shall carry through the program
for k=3, Tzlp:[N—M,M—Ml,Ml]; the general-
ization to arbitrary « will be evident in the end.
T~he Pij of Eq. (4) are permutation operators
of Ry of SN. We may represent them by M
distinguishable particles on a cyclic chain of
N sites. In addition, rearrangements of the
M particles constitute a representation of Sy;.
If1 Sle <se e <Yom <N are the coordinates
of the M particles, and Aq,+++,Aps a set of un-
equal real numbers, then we seek a solution
to Eq. (4) of the form
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P,Q are two permutations of the integers 1,
«es,M. We arrange [@,P] as an M!XM! ma-
trix, and denote the columns by ¢p.

One finds Eq. (4) to be satisfied, except for
periodicity, if
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It is to be understood that the PozB of Eq. (10)
are now the permutation operators of an as

yet unspecified representation R¢ of Spy. Since
these Y’ operators satisfy the same identities
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as (Y7), (Y8), Egs. (9) are consistent. Imposing periodic boundary conditions, we obtain the equa-

tions
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Here Xy g’ is X;;" with x4 g replacing x;;. We may thus rewrite Eqs. (12) and (13) as
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We choose the representation R, and Sy to be [my,mg,+++,m,]. Thus Eq. (4) is satisfied, and
we find the eigenvalue to be
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Although the problem at this point has only been reduced to another matrix equation (13’), we no-
tice that this new equation is identical in form to the original equation (4). Thus we may use the same
trick to again reduce R¢. For « a finite number of rows, this process will terminate after produc-
ing k coupled algebraic equations.

For our case where k=3, we carry the procedure through once more, and obtain the equations
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We take the logarithm of Eqs. (15), (16), and -
an): of N,M,M, ascending real numbers; Ij,Jp,K
prYAs B
B _ , are either integers or half integers, coming
Lp - ZWIp +ZA9(ZP 24), (157) from the logarithm. For the ground state, when

5 ,9(A—A’)=21rJA+Z)p9(2A—2p) M is even and N,M, are odd, we find

I =successi inte f
+Ek9(2A—2k), (16" u ive integers from

-3(N-1) to +3(N-1), (18a)
20, ,0(-k")=21K +3, 0(2k-2A), a7
(2 B “A 1 s
2 +JA =successive integers from
where 6(x)=-2tan"'(x/c), and p,A,% are sets 1-M/2 to +M /2, (18b)
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K P successive integers from In addition,
—3(M,-1) to +3(M,-1). (18¢) 5
——f P, L odA,
We may now approach the limit N,M ,M, L Q
- proportionally, obtaining integral equations. M, (R
After differentiating, these equations for the = f—R Tdk; (22)
appropriate densities are
the ground state energy is
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We may also solve for a representation Rz/)’ :ﬁw by making use of the identity (Y13). The m; are
now the lengths of the k columns. All equations remain the same, except Eq. (24), which becomes

B, __4cp,dk, __2cp,dk,’
— 24’
27p, fB ctra(k,—k,)? 1+ fB o (y=k,")?" (247)

These sets of integral equations are generalized Fredholm equations with a symmetric nonsingu-
lar kernel. If some Bj=«, i#1, we integrate the ith equation over all ki, giving m;,1=m;. Thus
all Bj=e, 7#1, corresponds to a rectangular tableau.

Itis a oleasure to thank C. N. Yang for many helpful discussions.

IC. N. Yang, Phys. Rev. Letters 19, 1312 (1967). References to particular equations of this paper will be desig~

nated by Y plus the number of the equation; thus, Y1 is Eq. (1) of the paper. This paper gives earlier references
to work on the problem.
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