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MEASUREMENT OF THE TOTAL MUON POLARIZATION IN K* =%+ u*t+ v
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From a measurement of the total polarization of the muon, we have determined the pa-

rameter ¢(g?) in the decay KT —n%+pu™ + v,

The decay Kt - 7%+ put+ v (K#3) is a particular-
ly interesting subject for study because it is an
example of a high-energy weak interaction that
can be experimentally investigated in detail.
Furthermore, the theoretical description of this
process is relatively uncomplicated. By apply-
ing the usual ideas of the V-A theory of weak in-
teractions, one is led to the following matrix ele-
ment for the decay:
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In this expresstion f,(¢?) and £(¢?) are form fac-
tors that describe the effects of the strong inter-
actions of the K™ and the m° mesons on the weak-
interaction process. These form factors may de-
pend on qa, the square of the invariant mass of
the lepton pair. pp and p; are four-momenta.

In this Letter we shall describe an experiment
which we have made to determine £(¢2%). This pa-
rameter is important for many reasons. The
principle of time-reversal invariance can be
checked by determining the phase of £, This
principle requires that the phase of £ be 0° or
180° for all values of ¢2. It is possible to test
the prediction of the |AT |=} selection rule which
requires that the value of ¢ in K ;3* decay be
equal to the value of £ in K ;3° decay. A compar-
ison of the K ;;3" and the K,3" decays can be
used to test the principle of muon-electron uni-
versality of weak coupling strength if the value
of £ is known. There are also a variety of pre-
dictions made with the use of dispersion theory
that can be checked by measuring £ and its ¢2 de-
pendence. Recently there have been predictions
made through the use of current-algebra-soft-
pion theoretical techniques which relate the
Ku3+ form factors to other K+ decay form fac-

tors.
Many of the determinations of ¢ that have been

reported are based on measurements that can be
interpreted only if the answers to many of the
questions discussed above are known. For exam-
ple, one frequently employed method of deter-
mining £ has been the measurement of the ratio
of the K* decay rates into the K ;3% and the K,3*
channels,

N Kt -+ ptiy
TKt—=1m+et+ v’
This ratio depends on ¢ because the term in the
matrix element which multiplies £ is proportion-
al to the lepton mass. In this method of deter-
mining £ from a measurement of R it is neces-
sary to assume that the form factors f, and ¢
are constant, that £ is real, and that the princi-
ple of muon-electron universality is applicable.
There have also been many experiments report-
ed in which £ is determined from measurements
of the 7° or p* energy spectra, or from the mu-
on longitudinal polarization. The interpretation
of these experiments is independent of the as-
sumption of muon-electron universality, but the
other assumptions mentioned are necessary in
the analysis of practical experiments., As it is
of considerable interest to determine ¢ in a man-
ner that is independent of all of the assumptions
—universality, time-reversal invariance, and in-
dependence of £ on g2—we have undertaken an ex-
periment suggested in a theoretical paper by Ca-
bibbo and Maksymowicz.!

These authors have shown that the muon in
K ;3 decay is 100% polarized at each point in the
Dalitz plot. The direction in which the muon is

_polarized depends only on the value of £ at the

point in the Dalitz plot which characterizes the
event in question. To illustrate this effect we
shall consider the components of the muon polar-
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FIG. 1. Total muon polarization in K™ 7%+pu*+p
for the cases Im¢ =0, Ref =+1., In these cases there
is no component of the polarization out of the plane
containing py and f)“. The coordinate system is shown
on the right-hand side of the figure.

ization along three axes:

In Fig. 1 we have shown the muon polarization
for the particular cases Re{=+1,Im£=0. In
these cases there is no component of o, along
eT as ¢ is real. It is apparent from the figure
that the direction of the polarization vector is
most affected by changes in £ for the events in
which the 7° energy is small.

In order to determine £ by observing the muon
polarization, we have made use of the apparatus
shown in Fig. 2. K mesons from a 500-MeV/c
Bevatron secondary beam were brought to rest
in a carbon-dust stopper. A counter telescope
and several spark chambers, not shown in the
figure, were placed in the stopping beam. To de-
termine the point in the Dalitz plot characteriz-
ing a given K ;3" decay, we measured the direc-
tion and range of the muon in spark chambers
SC1, SC2, and SC3, and the aluminum-plate
range chamber. We detected muons having a ki-
netic energy between 55 and 90 MeV. We deter-
mined the location of the Kt decay by projecting
the muon and kaon tracks into the carbon stop-
per. We measured the conversion points of both
gamma rays from the 7° decay in lead-plate
spark chambers surrounding the stopper.

The measurements described thus far are suf-
ficient to limit the location of a given event to
two positions in the Dalitz plot corresponding to
two different 7° directions. By counting sparks
in the lead-plate spark chambers, we were able
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FIG. 2. Apparatus used in this experiment. K™ me-
sons entered the apparatus in a direction perpendicu-
lar to the plane of the drawing. The muon polarization
was determined from the angular distribution of the
ut—e*+y+7 positrons which we observed in the mag-
netically shielded aluminum-plate spark chamber on
the left-hand side of the apparatus.

to determine the energy of the converted gamma
rays with sufficient precision to distinguish be-
tween the two positions in those cases where
they were not near to each other. When the two
positions are near each other, an error in as-
signment is unimportant. To substantiate this
statement we made a study of our gamma-ray
energy resolution by detecting gamma rays of
known energy from the K+ — 7t + 7° decay. A
Monte Carlo calculation taking into account this
experimentally determined energy resolution
has shown that the error introduced into the mea-
surement of £ by our uncertainties in the loca-
tion of events in the Dalitz plot was not signifi-
cant.

We determined the direction in which the mu-
ons were polarized by observing the angular dis-
tribution of the positrons in the p* —e*+ v+ ¥ de-
cays in a magnetically shielded aluminum-plate
spark chamber. The magnetic field inside this
chamber was less than 0.2 G. In order to deter-
mine if there was any muon depolarization, we
stopped polarized muons from the K™ - u* + v de-
cay. An analysis of 3000 events gave no indica-
tion of depolarization or systematic errors in
the measurement of the positron angular distri-
bution. By assuming that there was no depolari-
zation, we found that the longitudinal polariza-
tion of these K ;9 muons was —1.0+0.1 in agree-



VoLuME 20, NUMBER 17

PHYSICAL REVIEW LETTERS

22 APrIL 1968

ment with the expected value of ~1.0.

In the course of our experiment we were able
to accumulate 3133 events which we established
to be K #3““ decays. We have separated these
events into four categories according to the val-
ue of g2. To determine £(g2%) we have then taken
the events in each category and have made a
maximum-likelihood analysis, fitting the events
to the distributions theoretically predicted for
various trial values of complex £ The four sets
of likelihood contours we have obtained do not
show any significant dependence of £ on g% Ina
later paper we shall give a complete description
of these results. When we fit all of our events,
regardless of g2, to the predicted distributions,
we find that the most likely value of complex £
is Ret=-0.9,Im¢=-0.3. The locus of points in
the complex £ plane where the likelihood has
dropped to e 7! of its maximum value is rough-
ly circular with a radius of 0.5 around the most
likely value of complex & There is a 67% prob-
ability that the true value of £ lies within this
circle. This result is therefore consistent with
the principle of time-reversal invariance as
180° is a reasonably probable value for the
phase of £. In order to verify the prediction that
the muon is 100% polarized, we determined the
component of the polarization of the muons along
the axis theoretically predicted for the most like-
ly value of complex £&. The component of polar-
ization along this axis was +0.9+0.1.

The results of an analysis we have made by fit-
ting our data to the distributions of Cabibbo and
Maksymowicz for real values of £ are shown in
Table I. The polarization of the muon along the
predicted direction for the most likely value of £
in each ¢® category is shown in the column la-
beled Pigia]. Our data are consistent with the
assumption that ¢ is constant. If we do not re-
quire that £ be real, the values of Ref in Table I
are essentially unchanged. The errors, how-
ever, are approximately 1.5 times as large as
those shown in the table.

In order to check the principle of p-e univer-
sality it is necessary to combine our result for
¢ with measurements of the ratio R described
previously. The measurements of R that have
been reported? are mutually inconsistent and,
therefore, conclusions about the question of uni-
versality must await the resolution of this dis-
crepancy. The muon polarization measurements?
of ¢ in K° decay are consistent with the assump-
tion that £ is the same in K ;;3° and K ;3" decay.
This is in agreement with the prediction of the

Table I. The results of an analysis made with the as-
sumption that § is real. Pigsia] is the component of the
muon polarization along the theoretically predicted ax-
is for the value of Ref{ shown in the table. The expect-
ed value of this component is +1.0.

q2 Ty
(MeV?) (MeV) Events Ret Piotal
(359)2-(317)2  0.0-28.5 122 —0.2 0.7 +1.2£0.4
(317)2-(288)%2 28,5-46.5 265 —0.7 +0.7 +1,1+0.3
(288)%2-(249)% 46,5-67.5 488 —1.9 0.5 +0.8+0.2
<(249)? >67.5 2258 —0.9 +0.6 +0.9+0.1
All events 3133 -0.95+0.3 +0.9+0.1

|AT |=% rule. Our value of £ is consistent with
the qualitative features of the dispersion-theory
calculation.® Our value of ¢ does not agree with
the zero-pion-mass current-algebra prediction
made by Callan and Treiman,* if we assume that
this result can be extrapolated to the physical re-
gion. Our results are consistent with the theo-
retical work of Berman and Roy® who suggest
that ¢ is constant throughout the physical region
and equal to -1.

We wish to thank E. Segré for advice and en-
couragement, N. Cabibbo and A. Maksymowicz
for many discussions, and E. McLeish for her ef-
forts at the scanning table.
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The A, trajectory and residue functions are obtained and are found to change sign
around £ = —0,5 GeV2, This strongly suggests the Chew or the no-compensation mech
anism of ghost elimination. The trajectory parameter a(f) also agrees well with exist-

ing estimates,

Finite-energy sum rules have been used by Igi
and Matsuda® and by Dolen, Horn, and Schmid?
to obtain some useful information about the p
Regge parameter from 7p scattering data in the
intermediate energy range. More recently, Mat-
suda and Igi® have tried to clarify the ghost-elim-
inating mechanism for A, by using the finite-en-
ergy sum rule for a combination of KN and KN
scattering amplitudes. Unfortunately, this pro-
gram has not been successful because of the
large ambiguities in the various hyperon cou-
pling parameters. In this note we obtain the
ghost-eliminating mechanism for A, by studying
the sum rule S, for a suitably chosen photopro-
duction amplitude®* that couples only to A,. Thus
we are able to dispense with the saturation hy-
pothesis and work directly in terms of the multi-
poles, which are obtained from photoproduction
data. We also estimate the A, trajectory param-
eter by using the second-moment sum rule S,, in
addition to S,.

Using the notation of Zweig,® we pick up the

combination of invariant amplitudes A, ‘7’-2MA 7,

where the superscript (-) refers to the #-channel

-1 -
5= (e/4Mfe+2m(s - )-1L [ tm(a,

The second-moment sum rule gives

-—2MA4(_))dV= n'ly(t)N

isospin 1 and G-parity negative (isovector pho-
ton). This is related to the definite spin-parity
helicity amplitude 7* by®

Al(_)—2MA4(_) = —2vam7", 1)

where M is the nucleon mass. f d in this case
couples to the nucleon-antinucleon triplet state

33)+ |-3-3), which has c=P=(-1)J. This, to-
gether with the isospin and G-parity require-
ment, allows only A, exchange. Then, on absorb-
ing certain innocent factors into the reduced resi-
due function y(f), we get the usual Regge contri-
bution

1+e—i1roz » a-1
Al"’—ZMA4‘_’=oz m y(t)(;) , (2)
0

where

_S=u_ t—u?
TRl AT ®)
u is the pion mass, kL is the lab photon momen-
tum, and vy, is a scale factor which we choose
for convenience to be 1 GeV. Now, using the odd
crossing property of our amplitude® under v = -,
we get the following sum rule:

oz(t). (@)

1 (gv._2 1 N B _ 1 a(t)
S = {—E—[e+2M(up—un)]—;f VZIm(Az( )—ZMA4( ))dv} =;'y(t) Na(t). (5)

2 NZ

aM
Yth

a(t)+2

The scale factor v, has been dropped since we work in GeV units. The terms in front of the integrals
in Eqgs. (4) and (5) are the nucleon Born terms; up and p, denote the anomalous magnetic moments of
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