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X 10 ' ~ ' for all materials. We find that our
experimental results are in extremely good
agreement with this result which predicts that Tp

will go inversely as l for films of a given thick-
ness. For the data in Fig. 1, Rs uare is 8.7
x 10~ 0 and therefore ro/R is 1 1P. && 10 ' fl ', for
the data in Fig. 2, &square is = 2-5& 10' with

T0/Rs uare-4X10 ' & '. We consider this to
be good agreement with the value of Aslamazov
and Larkin of r0/Rs&uare-1. 5X10 ' & ', esPe-
cially since our ~, values were obtained from a.

fit to the data near O'K.
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BY THE PROPAGATION-MATRIX METHOD
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A necessary step in relating low-energy elec-
tron-diffraction (LEED) observations to crystal
structure is the calculation of accurate values of
the intensities of electrons scattered coherently
from a given periodic potential (or pseudopoten-
tial) terminating at a plane surface. Several
methods have been discussed in recent papers, ' '
but they do not seem to give complete and accu-
rate results, which we believe the method de-
scribed here can provide. Our method uses the
"mixed" (Fourier and coordinate) representation
of von Laue, ' employed recently by Hirabayashi
and Takeishi, ' but develops a systematic compu-
tational procedure whose convergence toward
the correct solution can be estimated. The cal-
culation of a "propagation" matrix P defined lat-

er is central to this procedure, since the prob-
lem is then reduced to finding the eigenvectors
of P, for which new high-speed computer tech-
niques are available.

The calculation has a natural division into two

parts, as is emphasized by Heine' and also adopt-
ed here. First, solutions are required of the en-
ergy-band problem for the infinite crystal, but
just for the particular discrete set of Bloch func-
tions with the same energy e and the same (re-
duced) component of wave number parallel to the
surface k as the incident electron has; this set
includes solutions which attenuate. Second, the
reflection coefficients are found from linear
equations which rnatch the wave function and its
normal derivative at the surface. In the crystal,
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q-(z) =[V(z)+ D(&, k )]q(z), (2)

i'(z) =
0
v+o o

where V(z) is an NxN matrix whose components
V~„are matrix elements of V(r) between two-
dimensional plane waves K and K„, D is a diag-
onal matrix with components Dm„= [-e+ (kp
+ K„)')5~„, and ON is the N xN null matrix and

l~ the N &N identity matrix. The band problem

these functions to be matched are sums of mem-
bers of the above set of Bloch functions, but in-
cluding only those which propagate or attenuate
into the crystal from the surface (outgoing func-
tions); similarly, in the vacuum, sums of plane
waves are used (and only the incident electron is
an incoming wave). The importance of P is that
its eigenvectors are just this discrete set of
Bloch functions.

This procedure has been applied in a detailed
calculation of reflected intensities over a large
range of energies for the potential produced by a
simple cubic lattice of point ions of charge g
compensated by a uniform negative charge. This
is analytically simple but is not an unrealistic
test of the power of the method, since the Cou-
lomb singularity, which provides the chief con-
vergence difficulty for plane-wave expansions,
is still present at each nucleus. Both the energy-
band structure and the reflection intensities are
found in the same calculation; comparison exhib-
its strikingly the close relation of the reflection
peaks to band edges.

Mixed representation and matrix formulation.
—Both the wave function g(r) and the given poten-
tial V(r) are expanded in Fourier series of the
form (1) in p=(x, y) (in planes parallel to the sur-
face), whose coefficients g„and V„, respective-
ly, are functions of z (normal to the surface):

((p, z) =P g (z) exp[i(k +K ) ~ p].
n n. p n

In (1) ~ = 1 to N enumerates the reciprocal lattice
vectors + in the plane in some arbitrary, but

definite order, e.g. , by shells, and gives g(r) in
an Nth order approximation. A convenient vec-
tor notation uses the coefficients to define col-
umn vectors' g(z)—:((1(z), (2(z), ~ ~ ~, (N(z))
q'(z) = (CI'(z), p2 -(.), ~ ~ ~, qN ( ))T, 4( ) =-(g( )T,
g'(z) ),where p„'(z) -=dg„(z)/dz, and 4(z) has

2N components. Insertion of (1) and the expan-
sion of V(r) in the Schrodinger equation gives dif-
ferential equations for p(z) and 4(z) of the forms

for given e and kp is now reduced formally and

conceptually to solution of the one-dimensional
linear vector differential equations (2) or (3).
Because of the linearity of (3), a. 2N x2N matrix
P(z, zs,' q, kp) can be introduced which relates the
values of any solution of (3) at initial position zs
to values at position z by

i(z) = P(z, z )i(z ).

Then P also satisfies (3), with initial value P(z~,
z~) = ~2N, and can be found accurately by step-
wise integration. If that integration is carried
through a full period a along z, the column eigen-
vectors of P(zs+a, zs) are seen from (4) to be
the Bloch functions (evaluated at zs), with eigen-
values exp(ikza), the multiplying factor on trans-
lation through a.

Matching equations and reflection coefficients.
—From the 2N column eigenvectors T&(zs) of the
full-period P, the N outgoing Bloch functions 4)
are selected by using the velocity formula

V. -=V. /xjz jz
= rm[q. +(z ) ~ y. '(z )]j s j s

zs+a dz q.*(z) ~ y.(z)
X

where Vjz is the un-normalized velocity ob-
tained directly from the values of the un-normal-
ized Bloch function and its derivative at zz, and

st is the (positive) normalization integral. Then
the Mg outgoing propagating waves can be ob-
tained from the sign' of Vjz, without evaluation
of X; the N-M~ outgoing attenuating waves are
determined by the sign of the imaginary part of
kz'

Now the total wave function in the crystal $~(z)
is a linear combination of the 4 (z) with coeffi-
cients given by the complex transmission coeffi-
cients T&. Similarly the wave function in the vac-
uum 4 (z) is a linear combination of outgoing
plane waves whose coefficients are the complex
reflection coefficients R, plus a single incom-
ing wave, the incident plane wave with unit am-
plitude. Since T& (z~) has known components,
which are the expansion coefficients in plane
waves in the p plane, Ã(zs) and 4' (zs) can be
matched component by component at the surface
z =z~. This provides just 2N linear equations
for the 2N R's and T's; the values of the R's (but
not the T's) are independent of the normalization
of the 4j .
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F&Q. l. {a) Band structure e{~z")for the model potential with Z= l, a=4, along the line k&a= (o.2, 0.&) between
-0.5 and 4.5 By, calculated with a nine-courier-component approximation (lV= 9). At the right-hand side on the
same energy scale are shown all the significant reflected intensities IR+I of all the propagating waves; n=1, 2, 3,
4, 5 correspond to 2K„a= (00), (10), (01), (10), (OT), respectively; the vacuum potential is zero, and values of IR& I

below e = 0 correspond formally to an incident damped wave. (b) Kn].arged plot of lines in (a) at 3.4 Hy showing the
projected intensities on the p plane of the specularly reflected wave and the fourth propagating wave in vacuum,
(k&/k)IRO I and (ks/k)IR101 where k=e
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A check on these p's and T's is provided by
the conservation theorem for the propagating
modes

My 2 MC 2P (k /k ) IR I
+ P (V. /R ) IT I=.1, (6)

n=l j=l
where Mt/- is the number of propagating modes
in the vacuum, and k„= [e-(k&+K„)']"'. The
proof shows that the current carried by a super-
position of propagating Bloch functions with the
same q and k& is the sum of the individual cur-
rents, ' so that expressing 4 as a sum of 0j+
guarantees that the current at infinity is outgo-
ing, and thus never violates the boundary condi-
tion at infinity. The relation (6) is exa, ct, even
when the p's and T's are found in an N-compo-
nent approximation.

Results for a simple potential. —We define a
precise problem for our simple-cubic-crystal
model by choosing a semi-infinite crystal with a
(001) surface for scattering, placed halfway be-
tween lattice planes; thus if the plane z = 0 is a
lattice plane, the surface is at z =-—,'a. The
Fourier coefficients of the model potential in the
mixed representation for this choice of surface
orientation then have the analytical forms, valid
over ——,'a &z ~ —,'a (and then repeating with period
a),

V (z) = (—2Z/na) exp( —2v Iz I/a)
n

xi[exp(4~n Iz I/a+ 1)/exp(2vn)-1]+ 1],

n g (0, 0), where K- = (2w/a) n, n —= (n „n,), n = In I,
n „n,= 0, +1,+2, ~ ~, and V«(z) = (-4mZ/a) [-,' -( I z I /
a)(1- Iz I/a)]. The functions V„-(z) curve down-

ward to a cusp at z = 0, and decrease exponen-
tially for increasing n at all z except z =0. The
periodic crystal potential is assumed cut off ab-
ruptly at the crystal surface where it rises dis-
continuously to the uniform value in the vacuum;
the maximum value of the potential between the
ion cores, which occurs also on the surface on

[001] lattice lines, is -0.2138 Ry for Z =1, a =4a, ;
however, V«(z) is continuous at the. surface.

The spectrum of reflected intensities along
with the band structure is shown in Fig. 1(a) for
Z = 1, a =4 (=2.12 A), k&a =(0.2, 0.1) (near nor-
mal incidence), N = 9 [n = (00), (10), (10), (01), (11),
(11),(11),(1T)] up to e =4.5 Ry (=61.2 V). Typi-
cally the intensity rises on approaching a band

edge from within the band, then breaks sharply
as the energy gap is entered. An interesting re-

suit is that IRn I' for beams other than the spec-
ularly reflected beam Ip, ~' can be greater than

l; however, no violation of matter conservation
results, and (6) is satisfied because of the fac-
tors (k„/kl) & l. In Fig. 1(b) an enlarged view of
the first and fourth lines at 3.4 Ry illustrates
this.

The absolute accuracy of the calculation has
been estimated by finding independently the low-
est two energies at k = 0; the energies found
from eigenvalues of P for N = 9 (and normal inci-
dence) are 6 to 7% high. The relative accuracy
and shape of the reflection spectrum are proba-
bly better, since calculations at @=13 show
much smaller differences from N =9.

In summary, this method appears to provide
reasonably accurate values of LEED intensities
for a given periodic potential, which could be
further refined. " It can be straightforwardly
extended to films and surface layers; it provides
energy bands and wave functions for a particular
direction in k space, including attenuating solu-
tions, that may be useful in other connections.
The numerical procedures, which consumed
most of the effort, will be described elsewhere,
but we note that the calculation has been made
practicable by a new program for eigenvectors
of unsymmetrical real matrices due to Parlett. "

We are greatly indebted to F. Jona of IBM Re-
search for constant advice and stimulation. We
should like to thank F. Branin and D. Zein of
IBM for making CEEP available. Our colleagues
in the theoretical physics group, particularly
T. Schultz and J. Janak, have been helpful at key
points.
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genvalues of P belonging to exponentially increasing
Bloch functions, which rapidly increase as N in-
creases.

~~A Fortran-IV program for the IBM 7094 called
CEEP (Complete Eigenvalue-Eigenvector Program).
F. Branin, private communication.

TEMPERATURE DEPENDENCE OF THE SPIN SUSCEPTIBILITY OF A
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We have calculated the contribution of spin
fluctuations' ' ("paramagnons") to the tempera-
ture dependence of the susceptibility of a nearly
ferromagnetic Fermi liquid. We find a term in
X(T)/X(0) proportional to (T/K0'TF)', where K,
is the Stoner enhancement factor, in contrast to
(T/TF)' for free fermions. For K, '»1, the co-
efficient of this term contains no adjustable pa-
rameters, and since X(0) = 3pm'/(2K0'kgTF), "'
the theory makes a definite, quantitative asser-
tion, independent of any assumption about TF,
about the relation between x(0) and the tempera-
ture dependence of X(T) for T &K03TF Compar. i-
son with experiments, discussed in more detail
below, is made in Fig. 3.

We calculate the susceptibility per unit volume
as

X p 8 2 p

where p, m is the magnetic moment, N/V the
number of particles per unit volume =PF3/3v,
and E is the free energy per particle. g is relat-
ed to the difference of spin up and spin down:

N —N
+

of Go is negligible, and (1) leads to

(4)

=T Z —.'i»[I-~x x-] ~x x-),
k, 40

where

= T Z ~»[I-fx" ]+fx" ), (t)ladder
k, e

f- f--
'~(k (e) = ) .~-(& -+(

p +k p
(8)

where X(0) =K0 'Xpauii is the Stoner-enhanced
zero-temperature susceptibility.

We are interested in those parts of bE which
represent the correction to E due to paramag-
nons. We consider for bE both the ladder and
the ring diagrams (Fig. 1):

bE =bE ring+bE ladder,

V ring

E can be written in the form

F (T, f) = Go (T, B) + (IN/40) (1—f')

+~(T, B) gB, -(3)

f- -f
0+—

(k ) ) ~ p p+k
~ (d —2B

p+k p

where B is determined by (&F/sB)T g
=0. B is

a mathematical object, G, (T, B) is the free ener-
gy of a noninteracting Fermi gas with single-par-
ticle energies ep +

-—p2/2m + B, IN(1 f2)/4V i—s
the first order of perturbation theory in the inter-
action J, and bE is the contribution of higher or-
ders in I. When only leading terms in the Stoner
enhancement factor Ko '= [I-IN(0)] ' [N(0) =den-
sity of states at the Fermi surface] are retained,~ is found to vanish for T = 0, the T dependence

f =—[exp($ +B)/T+1]
p

=p'/2m —p
p

(10)

(p is the chemical potential at T = 0).
Notice that, to the lowest order in tempera-

ture, the free energy F is equal to gN (N=total
number of particles) plus the thermodynamic po-
tential Q(p. , T) evaluated at the chemical poten-
tial at T =0. The proof is easy: Let p. +5@. be
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